OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 36 — Dec. 20, 1999
  • pp: 7305–7320

Simultaneous retrieval of aerosol refractive index and particle size distribution from ground-based measurements of direct and scattered solar radiation

Peter Romanov, Norman T. O’Neill, Alain Royer, and Bruce L. J. McArthur  »View Author Affiliations


Applied Optics, Vol. 38, Issue 36, pp. 7305-7320 (1999)
http://dx.doi.org/10.1364/AO.38.007305


View Full Text Article

Enhanced HTML    Acrobat PDF (229 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ground-based sunphotometer observation of direct and scattered solar radiation is a traditional tool for providing data on aerosol optical properties. Spectral transmission and solar aureole measurements provide an optical source of aerosol information, which can be inverted for retrieval of microphysical properties (particle size distribution and refractive index). However, to infer these aerosol properties from ground-based remote-sensing measurements, special numerical inversion methods should be developed and applied. We propose two improvements to the existing inversion techniques employed to derive aerosol microphysical properties from combined atmospheric transmission and solar aureole measurements. First, the aerosol refractive index is directly included in the inversion procedure and is retrieved simultaneously with the particle size spectra. Second, we allow for real or effective instrumental pointing errors by including a correction factor for scattering angle errors as a retrieved inversion parameter. The inversion technique is validated by numerical simulations and applied to field data. It is shown that ground-based sunphotometer measurements enable one to derive the real part of the aerosol refractive index with an absolute error of 0.03–0.05 and to distinguish roughly between weakly and strongly absorbing aerosols. The aureole angular observation scheme can be refined with an absolute accuracy of 0.15–0.19 deg. Offset corrections to the scattering angle error are generally found to be small and consistently of the order of -0.17. This error magnitude is deduced to be due primarily to nonlinear field-of-view averaging effects rather than to instrumental errors.

© 1999 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1110) Atmospheric and oceanic optics : Aerosols
(280.1100) Remote sensing and sensors : Aerosol detection

History
Original Manuscript: May 14, 1999
Revised Manuscript: August 11, 1999
Published: December 20, 1999

Citation
Peter Romanov, Norman T. O’Neill, Alain Royer, and Bruce L. J. McArthur, "Simultaneous retrieval of aerosol refractive index and particle size distribution from ground-based measurements of direct and scattered solar radiation," Appl. Opt. 38, 7305-7320 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-36-7305


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Caokley, J. E. Hansen, D. J. Hoffman, “Climate forcing by antropogenic aerosol,” Science 255, 423–429 (1992). [CrossRef] [PubMed]
  2. J. A. Coakley, R. D. Cess, “Response of the NCAR community climate model to the radiative forcing by the naturally occurring tropospheric aerosols,” J. Atmos. Sci. 42, 1677–1692 (1985). [CrossRef]
  3. P. M. Teillet, G. Fedosejevs, F. J. Ahern, R. P. Gauthier, “Sensitivity of surface reflectance retrieval to uncertainties in aerosol optical properties,” Appl. Opt. 30, 3933–3940 (1994). [CrossRef]
  4. G. E. Shaw, “Inversion of optical scattering and spectral extinction measurements to recover aerosol size spectra,” Appl. Opt. 18, 988–993 (1979). [CrossRef] [PubMed]
  5. N. T. O’Neill, J. R. Miller, “Combined solar aureole and solar beam extinction measurements: 2. Studies of the inferred aerosol size distribution,” Appl. Opt. 23, 3697–3703 (1984). [CrossRef]
  6. D. Tanre, C. Devaux, H. Herman, R. Santer, “Radiative properties of desert aerosols by optical ground based measurements at solar wavelengths,” J. Geophys. Res. D 93, 14,223–14,231 (1988). [CrossRef]
  7. G. Tonna, T. Nakajima, R. Rao, “Aerosol features retrieved from solar aureole data: a simulation study concerning a turbid atmosphere,” Appl. Opt. 34, 4486–4499 (1995). [CrossRef] [PubMed]
  8. T. Nakajima, G. Tonna, R. Rao, P. Boi, Y. Kaufman, B. Holben, “Use of sky brightness measurements from ground for remote sensing of particulate polydispersions,” Appl. Opt. 35, 2672–2686 (1996). [CrossRef] [PubMed]
  9. M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978). [CrossRef]
  10. M. A. Box, A. Deepak, “An approximation to multiple scattering in the Earth’s atmosphere: almucantar radiance formulation,” J. Atmos. Sci. 38, 1037–1048 (1981). [CrossRef]
  11. N. T. O’Neill, J. R. Miller, “Constrained linear inversion of optical scattered data for particle size spectra: an approach to angular optimization,” Appl. Opt. 21, 1231–1235 (1982). [CrossRef]
  12. T. Nakajima, M. Tanaka, T. Yamamuchi, “Retrieval of the optical properties of the aerosols from aureole and extinction data,” Appl. Opt. 22, 2951–2959 (1983). [CrossRef]
  13. O. V. Dubovik, T. V. Lapyonok, S. L. Oschepkov, “Improved technique for data inversion: optical sizing of multicomponent aerosols,” Appl. Opt. 34, 8422–8436 (1995). [CrossRef] [PubMed]
  14. K. S. Shifrin, V. F. Turchin, L. S. Turovtseva, V. A. Gashko, “Reconstruction of particles size distribution by statistical regularization of the scattered function,” Izv. Atmos. Oceanic Phys. 8, 1268–1278 (1972).
  15. S. Twomey, H. B. Howell, “Some aspects of the optical estimation of microstructure in fog and cloud,” Appl. Opt. 6, 2125–2131 (1967). [CrossRef] [PubMed]
  16. E. R. Westwater, A. Cohen, “Application of Backus–Gilbert inversion technique to determination of aerosol size distribution from optical scattering measurements,” Appl. Opt. 12, 1340–1348 (1973). [CrossRef] [PubMed]
  17. J. A. Reagan, D. M. Birne, M. D. King, “Determination of complex refractive index and size distribution of atmospheric particles from bistatic–monostatic lidar and solar radiometer measurements,” J. Geophys. Res. 85, 1591–1599 (1980). [CrossRef]
  18. M. Weindisch, W. von Hoyningen-Huene, “Possibility of refractive index determination of atmospheric aerosol particles by ground-based solar extinction and scattering measurements,” Atmos. Environ. 28, 785–792 (1994). [CrossRef]
  19. M. Tanaka, T. Nakajima, T. Takamura, “Simultaneous determination of complex refractive index and size distribution of airborne and water-suspended particles from light scattering measurements,” J. Meteorol. Soc. Jpn. 60, 1259–1271 (1982).
  20. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).
  21. Y. J. Kaufman, A. Gitelson, A. Karnieli, E. Ganor, R. S. Fraser, T. Nakajima, S. Matoo, B. Holben, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. D 99, 10,341–10,356 (1994). [CrossRef]
  22. P. Yu. Romanov, V. V. Rozanov, Yu. M. Timofeyev, “Combined interpretation of ground-based measurement of atmospheric clarity,” Izv. Akad. Sci. USSR Atmos. Oceanic Phys. 24, 228–235 (1988).
  23. V. V. Rozanov, S. P. Obrastzov, P. Yu. Romanov, “Sensitivity of the optical characteristics of a polydispersed aerosol to variations of the complex refractive index,” Izv. Akad. Sci. USSR Atmos. Oceanic Phys. 23, 293–296 (1987).
  24. J. T. Twitty, “The inversion of aureole measurements to derive aerosol size distributions,” J. Atmos. Sci. 32, 584–591 (1975). [CrossRef]
  25. Q. Jinhuan, “An approximate expression of the sky radiance in almucantar and its application,” Adv. Atmos. Phys. 3, 1–9 (1986). [CrossRef]
  26. R. A. McClatchey, H.-J. Bolle, K. Ya. Kondratyev, “A preliminary cloudless standard atmosphere for radiation computation,” (World Meteorological Organization, Geneva, TD-No.24 1986).
  27. R. Cess, I. L. Vullis, “Inferring surface solar absorption form broadband satellite measurements,” J. Clim. 2, 974–985 (1989). [CrossRef]
  28. J. T. Houghton, F. W. Taylor, C. D. Rodgers, Remote Sounding of the Atmosphere (Cambridge U. Press, Cambridge, 1984).
  29. S. Twomey, “On the numerical solution of Fredholm integral equation of the first kind by the inversion of the linear system produced by quadrature,” J. Assoc. Comput. Mach. 10, 97–101 (1963). [CrossRef]
  30. D. Q. Wark, H. E. Fleming, “Indirect measurements of atmospheric temperature profiles from satellites. I. Introduction,” Mon. Weather Rev. 94, 351–362 (1966). [CrossRef]
  31. V. F. Turchin, V. Z. Nozik, “Statistical regularization of the solution of incorrectly posed problems,” Izv. Atmos. Ocean. Phys. 5, 29–38 (1969).
  32. E. R. Westwater, O. N. Strand, “Statistical information content of radiation measurements used in indirect sensing,” J. Atmos. Sci. 25, 750–758 (1968). [CrossRef]
  33. C. D. Rodgers, “Statistical principles of inversion theory,” in Inversion Methods in Atmospheric Remote Sounding, A. Deepak, ed. (Academic, New York, 1977), pp. 117–134.
  34. L. A. Remer, S. Gasso, D. A. Hegg, Y. J. Kaufman, B. N. Holben, “Urban/industrial aerosol: ground-based sun/sky radiometer and airborne in situ measurements,” J. Geophys. Res. D 102, 16,849–16,859 (1997). [CrossRef]
  35. B. Holben, T. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Janovak, A. Smirnov, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sens. Environ. 66, 1–16 (1998). [CrossRef]
  36. N. T. O’Neill, A. Royer, P. Romanov, P. M. Teillet, B. McArthur, “The AEROCAN sunphotometer network: a component of a cal/val strategy for consistent image correction,” in Proceedings of the Twentieth Canadian Symposium on Remote Sensing: Geomatics in the Era of Radarsat, available on a 1997 CD-ROM from National Defence Headquarters, Directorate of Geographic Operations, Ottawa, Ontario K1A 0K2, Canada.
  37. Y. J. Kaufman, D. Tanre, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, P. M. Teillet, “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” J. Geophys. Res. D 102, 16,815–16,830 (1997). [CrossRef]
  38. M. I. Mishchenko, L. D. Travis, R. A. Kahn, R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydispersed spheroids,” J. Geophys. Res. D 102, 16,831–16,847 (1997). [CrossRef]
  39. J. B. Pollack, J. N. Cuzzy, “Scattering by nonspherical particles of size comparable to a wavelength: a new semi-empirical theory and its application to tropospheric aerosols,” J. Atmos. Sci. 37, 868–881 (1980). [CrossRef]
  40. P. Koepke, M. Hess, “Scattering functions of tropospheric aerosol: the effects of nonspherical particles,” Appl. Opt. 27, 2422–2430 (1988). [CrossRef] [PubMed]
  41. T. Nakajima, M. Tanaka, M. Yamano, M. Shiobara, K. Arao, Y. Nakanishi, “Aerosol optical characteristics in the yellow sand events observed in May, 1982 at Nakasaki. II. Models,” J. Meteorol. Soc. Jpn. 67, 279–291 (1989).
  42. R. G. Pinnick, D. E. Carroll, D. J. Hoffman, “Polarized light scattered from monodisperse randomly oriented nonspherical aerosols: measurements,” Appl. Opt. 15, 384–393 (1976). [CrossRef] [PubMed]
  43. G. A. d’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols: Their Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).
  44. M. A. Box, A. Deepak, “Retrieval of aerosol size distributions by inversion of simulated aureole data in the presence of multiple scattering,” Appl. Opt. 18, 1376–1382 (1979). [CrossRef] [PubMed]
  45. R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Dusterdiek, “Lidar, nephelometer, and in situ aerosol experiments in southern Ontario,” J. Geophys. Res. D 101, 19,199–19209 (1996). [CrossRef]
  46. N. T. O’Neill, A. Royer, P. Coté, B. McArthur, “Relations between optically derived aerosol parameters, humidity, and air-quality data in an urban atmosphere,” J. Appl. Meteorol. 32, 1484–1498 (1993). [CrossRef]
  47. M. A. Box, A. Deepak, “Finite sun effects in the interpretation of solar aureole,” Appl. Opt. 20, 2806–2810 (1981). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited