OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 36 — Dec. 20, 1999
  • pp: 7342–7354

Atmospheric CH4 and H2O monitoring with near-infrared InGaAs laser diodes by the SDLA, a balloonborne spectrometer for tropospheric and stratospheric in situ measurements

Georges Durry and Gerard Megie  »View Author Affiliations


Applied Optics, Vol. 38, Issue 36, pp. 7342-7354 (1999)
http://dx.doi.org/10.1364/AO.38.007342


View Full Text Article

Enhanced HTML    Acrobat PDF (245 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Spectromètre à Diodes Laser Accordables (SDLA), a balloonborne spectrometer devoted to the in situ measurement of CH4 and H2O in the atmosphere that uses commercial distributed-feedback InGaAs laser diodes in combination with differential absorption spectroscopy, is described. Absorption spectra of CH4 (in the 1.653-µm region) and H2O (in the 1.393-µm region) are simultaneously sampled at 1-s intervals by coupling with optical fibers of two near-infrared laser diodes to a Herriott multipass cell open to the atmosphere. Spectra of methane and water vapor in an altitude range of ∼1 to ∼31 km recorded during the recent balloon flights of the SDLA are presented. Mixing ratios with a precision error ranging from 5% to 10% are retrieved from the atmospheric spectra by a nonlinear least-squares fit to the spectral line shape in conjunction with in situ simultaneous pressure and temperature measurements.

© 1999 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(280.3420) Remote sensing and sensors : Laser sensors
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6380) Spectroscopy : Spectroscopy, modulation

History
Original Manuscript: May 28, 1999
Revised Manuscript: September 27, 1999
Published: December 20, 1999

Citation
Georges Durry and Gerard Megie, "Atmospheric CH4 and H2O monitoring with near-infrared InGaAs laser diodes by the SDLA, a balloonborne spectrometer for tropospheric and stratospheric in situ measurements," Appl. Opt. 38, 7342-7354 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-36-7342


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Uehara, H. Tai, “Remote detection of methane with a 1.66-µm diode laser,” Appl. Opt. 31, 809–814 (1992). [CrossRef] [PubMed]
  2. D. T. Cassidy, “Trace gas detection using 1.3-µm InGaAsP diode laser transmitter modules,” Appl. Opt. 27, 610–614 (1988). [CrossRef] [PubMed]
  3. J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994). [CrossRef]
  4. P. Cancio, C. Corsi, F. S. Pavone, R. U. Martinelli, R. J. Menna, “Sensitive detection of ammonia absorption by using a 1.65 µm distributed feedback InGaAsP diode laser,” Infrared Phys. Technol. 36, 987–993 (1995). [CrossRef]
  5. A. C. Stanton, J. A. Silver, “Measurements in the HCl 3 ← 0 band using a near-IR InGaAsP diode laser,” Appl. Opt. 27, 5009–5015 (1988). [CrossRef] [PubMed]
  6. Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991). [CrossRef]
  7. R. T. Menzies, C. R. Webster, E. D. Hinkley, “Balloon-borne diode-laser absorption spectrometer for measurements of stratospheric trace species,” Appl. Opt. 22, 2655–2664 (1983). [CrossRef] [PubMed]
  8. C. R. Webster, R. D. May, “Simultaneous in-situ measurements and diurnal variations of NO, NO2, O3, jNO2, CH4, H2O and CO2 in the 40-26 km region using an open path tunable diode laser spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987). [CrossRef]
  9. C. R. Webster, R. D. May, “In-situ stratospheric measurements of CH4, 13CH4, N2O, and OC18O using the BLISS tunable diode laser spectrometer,” Geophys. Res. Lett. 19, 45–48 (1992). [CrossRef]
  10. J. A. Silver, A. C. Stanton, “Airborne measurements of humidity using a single-mode Pb–salt diode laser,” Appl. Opt. 26, 2558–2572 (1987). [CrossRef] [PubMed]
  11. D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982). [CrossRef] [PubMed]
  12. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3,” Appl. Opt. 33, 454–475 (1994). [CrossRef] [PubMed]
  13. World Meteorological Organization, “Stratospheric processes and their role in climate,” (World Meteorological Organization, Geneva, 1998).
  14. B. Bobin, “Interprétation de la bande harmonique 2ν3 du méthane 12CH4,” J. Phys. (Paris) 33, 345–352 (1972). [CrossRef]
  15. L. R. Brown, J. S. Margolis, J. P. Champion, J. C. Hilico, J. M. Jouvard, M. Loete, C. Chackerian, G. Tarrago, D. C. Benner, “Methane and its isotopes: current status and prospects for improvement,” J. Quant. Spectrosc. Radiat. Transfer 48, 617–628 (1992). [CrossRef]
  16. R. A. Toth, “Extensive measurements of H216O line frequencies and strengths: 5750 to 7965 cm-1,” Appl. Opt. 33, 4851–4867 (1994). [CrossRef] [PubMed]
  17. M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 29, 3240–3249 (1995). [CrossRef]
  18. L. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989). [CrossRef]
  19. M. L. Salby, Fundamentals of Atmospheric Physics (Academic, San Diego, Calif., 1996), p. 207.
  20. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992). [CrossRef]
  21. A. S. Pine, “N2 and Ar broadening and line-mixing in the P and R branches of the ν3 band of CH4,” J. Quant. Spectrosc. Radiat. Transfer 57, 157–176 (1997). [CrossRef]
  22. D. R. Herriott, H. Kogelnik, R. Kompfer, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964). [CrossRef]
  23. D. R. Herriott, H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883–889 (1965). [CrossRef]
  24. G. Moreau, C. Robert, “Etude des variations d’un faisceau lumineux dans une cellule à passages multiples,” J. Opt. (Paris) 16, 177–183 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited