OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 36 — Dec. 20, 1999
  • pp: 7419–7430

Monte Carlo approach for solving the radiative transfer equation over mountainous and heterogeneous areas

Christophe Miesch, Xavier Briottet, Yann H. Kerr, and François Cabot  »View Author Affiliations


Applied Optics, Vol. 38, Issue 36, pp. 7419-7430 (1999)
http://dx.doi.org/10.1364/AO.38.007419


View Full Text Article

Enhanced HTML    Acrobat PDF (224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An algorithm based on the Monte Carlo method is developed to solve the radiative transfer equation in the reflective domain (0.4–4 µm) of the solar spectrum over rugged terrain. This algorithm takes into account relief, spatial heterogeneity, and ground bidirectional reflectance. The method permits the computation of irradiance components at ground level and radiance terms reaching an airborne or satelliteborne sensor. The Monte Carlo method consists of statistically simulating the paths of photons inside the Earth–atmosphere system to reproduce physical phenomena while introducing neither analytical modeling nor assumption. The potentialities of the code are then depicted over different types of landscape, including a seashore, a desert region, and a steep mountainous valley.

© 1999 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: February 8, 1999
Revised Manuscript: September 8, 1999
Published: December 20, 1999

Citation
Christophe Miesch, Xavier Briottet, Yann H. Kerr, and François Cabot, "Monte Carlo approach for solving the radiative transfer equation over mountainous and heterogeneous areas," Appl. Opt. 38, 7419-7430 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-36-7419


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. N. Holben, C. O. Justice, “The topographic effect on spectral response from nadir-pointing sensors,” Photogramm. Eng. Remote Sens. 46, 1191–1200 (1980).
  2. D. S. Kimes, J. A. Kirchner, “Modeling the effects of various radiant transfers in mountainous terrain on sensor response,” IEEE Trans. Geosci. Remote Sens. GE-19, 100–108 (1981). [CrossRef]
  3. T. Kusaka, Y. Kawata, S. Ueno, S. Furumoto, “Removal of the atmospheric and topographic effects from the rugged terrain image data remotely sensed by Landsat,” in Proceedings of International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronic Engineers, Piscataway, N.J., 1987), Vol. 1, pp. 649–652.
  4. T. Kusaka, Y. Kawata, H. Egawa, S. Ueno, “Signature variations due to atmospheric and topographic effects on satellite MSS data over rugged terrain,” in Proceedings of International Geoscience and Remote Sensing Symposium (European Space Agency, Paris, 1988), pp. 825–828.
  5. T. Kusaka, Y. Kawata, “Atmospheric and topographic correction of satellite data over mountainous terrain,” in Proceedings of International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), Vol. 1, pp. 58–60.
  6. R. Richter, “Correction of atmospheric and topographic effects for high spatial resolution satellite imagery,” Intl. Remote Sens. 18, 1099–1111 (1997). [CrossRef]
  7. C. Proy, D. Tanré, P. Y. Deschamps, “Evaluation of topographic effects on remotely sensed data,” Remote Sens. Environ. 30, 21–32 (1989). [CrossRef]
  8. E. Vermote, D. Tanré, J. L. Deuzé, M. Herman, J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6S: an overview,” IEEE Trans. Geosci. Remote Sens. 35, 675–686 (1997). [CrossRef]
  9. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Dacbinjan, B. A. Kargin, B. S. Elepov, The Monte Carlo Methods in Atmospheric Optics, D. L. MacAdam, ed., Vol. 12 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1980), pp. 5–17. [CrossRef]
  10. J. Lenoble, Atmospheric Radiative Transfer (Deepak, Hampton, Va., 1993).
  11. R. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1971).
  12. ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) spectral library, NASA: http://speclib.jpl.nasa.gov/ ; cognizant scientist, simon.j.hook@jpl.nasa.gov .
  13. Y. J. Kaufman, “Atmospheric effect on spatial resolution of surface imagery: errata,” Appl. Opt. 23, 4164–4172 (1987). [CrossRef]
  14. H. Cosnefroy, M. Leroy, X. Briottet, “Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors,” Remote Sens. Environ. 58, 101–114 (1996). [CrossRef]
  15. J. Dozier, J. Frew, “Atmospheric corrections to satellite radiometric data over rugged terrain,” Remote Sens. Environ. 11, 191–205 (1981). [CrossRef]
  16. R. W. Sloberg, B. K. P. Horn, “Atmospheric effects in satellite imaging of mountainous terrain,” Appl. Opt. 22, 1703–1716 (1983).
  17. J. Dozier, R. E. Davis, A. T. C. Chang, K. Brown, “The spectral bidirectional reflectance of snow,” in Proceedings of the 4th International Colloquium on Spectral Signatures of Objects in Remote Sensing (European Space Agency, Paris, 1988), pp. 87–92.
  18. S. G. Warren, “Optical properties of snow,” Rev. Geophys. Space Phys. 20, 67–89 (1982). [CrossRef]
  19. M. M. Verstraete, B. Pinty, R. E. Dickinson, “A physical model of the bidirectional reflectance of vegetation canopies. 2. Inversion and validation,” J. Geophys. Res. 95, 11,767–11,775 (1990). [CrossRef]
  20. F. E. Nicodemus, “Reflectance nomenclature and directional reflectance and emissivity,” Appl. Opt. 9, 1474–1475 (1970). [CrossRef] [PubMed]
  21. Y. M. Govaerts, M. M. Verstraete, “Raytran: a Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media,” IEEE Trans. Geosci. Remote Sens. 36, 493–504 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited