OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 36 — Dec. 20, 1999
  • pp: 7431–7441

Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status

Frank E. Hoge, C. Wayne Wright, Paul E. Lyon, Robert N. Swift, and James K. Yungel  »View Author Affiliations

Applied Optics, Vol. 38, Issue 36, pp. 7431-7441 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (212 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Oceanic radiance model inversion methods are used to develop a comprehensive algorithm for retrieval of the absorption coefficients of phycourobilin (PUB) pigment, type I phycoerythrobilin (PEB) pigment rich in PUB, and type II PEB deficient in PUB pigment (together with the usual “big three” inherent optical properties: the total backscattering coefficient and the absorption coefficients of chromophoric dissolved organic matter (CDOM)–detritus and phytoplankton). This fully modeled inversion algorithm is then simplified to yield a hybrid modeled–unmodeled inversion algorithm in which the phycoerythrin (PE) absorption coefficient is retrieved as unmodeled 488-nm absorption (which exceeds the modeled phytoplankton and the CDOM–detritus absorption coefficients). Each algorithm was applied to water-leaving radiances, but only hybrid modeled–unmodeled inversions yielded viable retrievals of the PE absorption coefficient. Validation of the PE absorption coefficient retrieval was achieved by relative comparison with airborne laser-induced PEB fluorescence. The modeled–unmodeled retrieval of four inherent optical properties by direct matrix inversion is rapid and well conditioned, but the accuracy is strongly limited by the accuracy of the three principal inherent optical property models across all four spectral bands. Several research areas are identified to enhance the radiance-model-based retrievals: (a) improved PEB and PUB absorption coefficient models, (b) PE spectral shifts induced by PUB chromophore substitution at chromophore binding sites, (c) specific absorption-sensitive phytoplankton absorption modeling, (d) total constituent backscattering modeling, (e) unmodeled carotinoid and phycocyanin absorption that are not now accounted for in the chlorophyll-dominated phytoplankton absorption coefficient model, and (f) iterative inversion techniques to solve for six constituents with only five radiances. Although considerable progress has been made toward the satellite recovery of PE absorption, the maturity of the retrieval is presently insufficient for routine global application. Instead it must currently be used on a regional basis where localized ship and aircraft validation can be made available. The algorithm was developed for the MODIS (Moderate-Resolution Imaging Spectroradiometer) sensor but is applicable to any sensor having comparable band locations.

© 1999 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(030.5620) Coherence and statistical optics : Radiative transfer
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.6550) Spectroscopy : Spectroscopy, visible

Original Manuscript: March 22, 1999
Revised Manuscript: August 20, 1999
Published: December 20, 1999

Frank E. Hoge, C. Wayne Wright, Paul E. Lyon, Robert N. Swift, and James K. Yungel, "Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status," Appl. Opt. 38, 7431-7441 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Bidigare, M. E. Ondrusek, J. H. Morrow, D. A. Kiefer, “In vivo absorption properties of algal pigments,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 290–302 (1990). [CrossRef]
  2. J. B. Waterbury, S. W. Watson, F. W. Valois, D. G. Franks, “Biological and ecological characterization of the marine unicellular cyanobacterium synechococcus,” in Photosynthetic Picoplankton, T. Platt, W. K. W. Li, eds., Canadian Bulletin of Fisheries and Aquatic Sciences No. 214 (Fisheries Research Board of Canada, Ottawa, Ontario, Canada, 1986).
  3. J. B. Waterbury, S. W. Watson, R. R. R. Guillard, L. E. Brand, “Widespread occurrence of a unicellular, marine, planktonic cyanobacterium,” Nature (London) 277, 293–294 (1979). [CrossRef]
  4. C. S. Yentsch, C. M. Yentsch, “Fluorescence spectral signatures: the characterization of phytoplankton populations by the use of excitation and emission spectra,” J. Mar. Res. 37, 471–483 (1979).
  5. A. M. Wood, D. A. Phinney, C. S. Yentsch, “Water column transparency and the distribution of spectrally distinct forms of phycoerythrin-containing organisms,” Mar. Ecol. Prog. Ser. 162, 25–31 (1998). [CrossRef]
  6. T. M. Kana, N. L. Feiwel, L. C. Flynn, “Nitrogen starvation in marine Synechococcus strains: clonal differences in phycobiliprotien breakdown and energy coupling,” Mar. Ecol. Prog. Ser. 88, 75–82 (1992). [CrossRef]
  7. T. M. Kana, P. M. Glibert, “Effect of irradiances up to 2000 µE m-2 s-1 on marine Synechococcus WH7803: I. Growth, pigmentation, and cell composition,” Deep-Sea Res. 34, 479–495 (1987). [CrossRef]
  8. L. J. Ong, A. N. Glazer, “Phycoerythrins of marine unicellular cyanobacteria. I. Bilin types and locations and energy transfer pathways in Synechococcus spp. phycoerythrins,” J. Biol. Chem. 266, 9515–9527 (1991). [PubMed]
  9. R. V. Swanson, L. J. Ong, S. M. Wilbanks, A. Glazer, “Phycoerythrins of marine unicellular cyanobacteria. II. Characterization of phycobiliprotiens with unusually high phycourobilin,” J. Biol. Chem. 266, 9528–9534 (1991). [PubMed]
  10. S. M. Wilbanks, R. de Lorimier, A. Glazer, “Phycoerythrins of marine unicellular cyanobacteria. III. Sequence of a class II phycoerythrin,” J. Biol. Chem. 266, 9535–9539 (1991). [PubMed]
  11. L. J. Ong, A. Glazer, “Structural studies of phycobiliprotiens in unicellular marine cyanobacteria,” in Light-Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models, S. E. Stevens, D. A. Bryant, eds. (American Society of Plant Physiologists, Rockville, Md., 1988), pp. 102–121.
  12. S. M. Wilbanks, A. Glazer, “Rod structure of a phycoerythrin II-containing phycobilisome. I. Organization and sequence of the gene cluster encoding the major phycobiliprotein rod components in the genome of marine Synechococcus SP WH8020,” J. Biol. Chem. 268, 1226–1235 (1993). [PubMed]
  13. F. E. Hoge, R. N. Swift, “Phytoplankton accessory pigments: evidence for the influence of phycoerythrin on the submarine light field,” Remote Sens. Environ. 34, 19–25 (1990). [CrossRef]
  14. F. E. Hoge, C. W. Wright, T. M. Kana, R. N. Swift, J. K. Yungel, “Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence measurements,” Appl. Opt. 37, 4744–4749 (1998). [CrossRef]
  15. F. E. Hoge, R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water-Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt. 20, 3197–3205 (1981). [CrossRef] [PubMed]
  16. F. E. Hoge, R. N. Swift, “Active-passive correlation spectroscopy: a new technique for identifying ocean color algorithm spectral regions,” Appl. Opt. 25, 2571–2583 (1986). [CrossRef] [PubMed]
  17. M. E. Culver, M. J. Perry, “Detection of phycoerythrin fluorescence in upwelling irradiance spectra,” Eos Trans. Am. Geophys. Union 75, 233 (1994).
  18. F. E. Hoge, P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16,631–16,648 (1996). [CrossRef]
  19. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm,” Appl. Opt. 38, 495–504 (1999). [CrossRef]
  20. R. J. Olson, S. W. Chisholm, E. R. Zettler, E. V. Armbrust, “Pigments, size, and distribution of Synechococcus in the North Atlantic and Pacific Oceans,” Limnol. Oceanogr. 35, 45–58 (1990).
  21. M. Vernet, B. G. Mitchell, O. Holm-Hansen, “Adaptation of synechococcus in situ determined by variability in intracellular phycoerythrin-543 at a coastal station off the Southern California coast, USA,” Mar. Ecol. 63, 9–16 (1990). [CrossRef]
  22. D. G. Capone, J. P. Zehr, H. W. Paerl, B. Bergman, E. J. Carpenter, “Trichodesmium, a globally significant marine cyanobacterium,” Science 276, 1221–1229 (1997). [CrossRef]
  23. H. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988). [CrossRef]
  24. F. E. Hoge, R. N. Swift, J. K. Yungel, “Oceanic radiance model development and validation: application of airborne active–passive ocean color spectral measurements,” Appl. Opt. 34, 3468–3476 (1995). [CrossRef] [PubMed]
  25. N. Hoepffner, S. Sathyendranath, “Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter,” J. Geophys. Res. 98, 22,789–22,803 (1993). [CrossRef]
  26. C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
  27. A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
  28. F. E. Hoge, A. Vodacek, N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
  29. F. E. Hoge, A. Vodacek, R. N. Swift, J. Y. Yungel, N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements,” Appl. Opt. 34, 7032–7038 (1995). [CrossRef] [PubMed]
  30. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93, 10,749–10,768 (1988). [CrossRef]
  31. S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigment in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989). [CrossRef]
  32. Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33, 5721–5732 (1994). [CrossRef] [PubMed]
  33. R. A. Maffione, D. R. Dana, J. M. Voss, “Spectral dependence of optical backscattering in the ocean,” presented at the OSA Annual Meeting, Portland, Ore., 10–15 September 1995, Paper MDD4.
  34. R. A. Maffione, D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Opt. 36, 6057–6067 (1997). [CrossRef] [PubMed]
  35. R. A. Maffione, D. R. Dana, “In-situ characterization of optical backscattering and attenuation for lidar applications,” in Laser Remote Sensing of Natural Waters: from Theory to Practice: CIS Selected Papers, V. I. Feigels, Y. I. Kopelevich, eds., Proc. SPIE2964, 152–163 (1996). [CrossRef]
  36. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited