OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 36 — Dec. 20, 1999
  • pp: 7456–7466

Coherent Doppler lidar signal spectrum with wind turbulence

Rod Frehlich and Larry Cornman  »View Author Affiliations

Applied Optics, Vol. 38, Issue 36, pp. 7456-7466 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (170 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The average signal spectrum (periodogram) for coherent Doppler lidar is calculated for a turbulent wind field. Simple approximations are compared with the exact calculation. The effects of random errors in the zero velocity reference, the effects of averaging spectral estimates by use of multiple lidar pulses, and the effects of the range dependence of the lidar signal power over the range gate are included. For high spatial resolution measurements the lidar signal power is concentrated around one spectral estimate (spectral bin), and correct interpretation of the contribution from turbulence is difficult because of the effects of spectral leakage. For range gates that are larger than the lidar pulse volume, the signal power is contained in many spectral bins and the effects of turbulence can be determined accurately for constant signal power over the range gate and for the far-field range dependence of the signal power.

© 1999 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3640) Atmospheric and oceanic optics : Lidar
(280.3640) Remote sensing and sensors : Lidar

Original Manuscript: May 13, 1999
Revised Manuscript: September 13, 1999
Published: December 20, 1999

Rod Frehlich and Larry Cornman, "Coherent Doppler lidar signal spectrum with wind turbulence," Appl. Opt. 38, 7456-7466 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990). [CrossRef] [PubMed]
  2. M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989). [CrossRef] [PubMed]
  3. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 µm using Tm,Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991). [CrossRef] [PubMed]
  4. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2-µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993). [CrossRef]
  5. R. G. Frehlich, S. Hannon, S. Henderson, “Performance of a 2-µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994). [CrossRef]
  6. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, P. A. Robinson, S. R. Harrell, “Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 µm,” Appl. Opt. 35, 7117–7127 (1996). [CrossRef] [PubMed]
  7. R. G. Frehlich, S. Hannon, S. Henderson, “Coherent Doppler lidar measurements of winds in the weak signal regime,” Appl. Opt. 36, 3491–3499 (1997). [CrossRef] [PubMed]
  8. R. G. Frehlich, S. Hannon, S. Henderson, “Coherent Doppler lidar measurements of wind field statistics,” Boundary-Layer Meteorol. 86, 233–256 (1998). [CrossRef]
  9. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993). [CrossRef]
  10. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Remote Sens. 31, 28–35 (1993). [CrossRef]
  11. R. G. Frehlich, M. J. Yadlowsky, “Performance of mean frequency estimators for Doppler radar and lidar,” J. Atmos. Oceanic Technol. 11, 1217–1230 (1994). [CrossRef]
  12. R. G. Frehlich, “Simulation of coherent Doppler lidar performance in the weak signal regime,” J. Atmos. Oceanic Technol. 13, 646–658 (1996). [CrossRef]
  13. R. G. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmos. Oceanic Technol. 14, 54–75 (1997). [CrossRef]
  14. B. J. Rye, R. M. Hardesty, “Detection techniques for validating Doppler estimates in heterodyne lidar,” Appl. Opt. 36, 1940–1951 (1997). [CrossRef] [PubMed]
  15. B. J. Rye, “Spectral correlation of atmospheric lidar returns with range-dependent backscatter,” J. Opt. Soc. Am. A. 7, 2199–2207 (1990). [CrossRef]
  16. V. A. Banakh, I. N. Smalikho, “Estimation of the turbulence energy dissipation rate from pulsed Doppler lidar data,” Atmos. Oceanic Opt. 10, 957–965 (1997).
  17. R. J. Doviak, D. S. Zrnic, Doppler Radar and Weather Observations (Academic, San Diego, Calif., 1993).
  18. R. R. Rogers, B. R. Tripp, “Some radar measurements of turbulence in snow,” J. Appl. Meteorol. 3, 603–610 (1964). [CrossRef]
  19. S. A. Cohn, “Radar measurements of turbulent eddy dissipation rate in the troposphere: a comparison of techniques,” J. Atmos. Oceanic Technol. 12, 85–95 (1995). [CrossRef]
  20. L. B. Cornman, C. S. Morse, G. Cunning, “Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements,” J. Aircr. 32, 171–177 (1995). [CrossRef]
  21. H. L. Van Trees, Detection, Estimation, and Modulation Theory, Radar-Sonar Signal Processing and Gaussian Signals in Noise (Wiley, New York, 1992).
  22. B. Gold, A. V. Oppenheim, C. M. Rader, “Theory and implementation of the discrete Hilbert transformation,” in Proceedings of Symposium on Computer Processing in Communications (Polytechnic Press, Brooklyn, N.Y., 1970) Vol. 19, pp. 235–250.
  23. V. Cizek, “Discrete Hilbert transform,” IEEE Trans. Audio Electroacoust. AU-18, 340–343 (1970). [CrossRef]
  24. P. H. Hilderbrand, R. S. Sekhon, “Objective determination of the noise level in Doppler spectra,” J. Appl. Meteorol. 13, 808–811 (1974). [CrossRef]
  25. R. G. Frehlich, “Coherent Doppler lidar signal covariance including wind shear and wind turbulence,” Appl. Opt. 33, 6472–6481 (1994). [CrossRef] [PubMed]
  26. B. T. Lottman, R. G. Frehlich, “Evaluation of coherent Doppler lidar velocity estimators in nonstationary regimes,” Appl. Opt. 36, 7906–7918 (1997). [CrossRef]
  27. R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991). [CrossRef] [PubMed]
  28. J. H. Churnside, H. T. Yura, “Speckle statistics of atmospherically backscattered laser light,” Appl. Opt. 22, 2559–2565 (1983). [CrossRef] [PubMed]
  29. S. M. Hannon, H. R. Bagley, R. K. Bogue, “Airborne Doppler lidar turbulence detection: ACLAIM flight test results,” in Laser Radar Technology and Applications IV, G. W. Kamerman, C. Werner, eds., Proc. SPIE3707, 234–241 (1999). [CrossRef]
  30. H. L. Van Trees, Detection, Estimation, and Modulation Theory (Wiley, New York, 1968), Part 1.
  31. C. W. Helstrom, Statistical Theory of Signal Detection (Pergamon, Oxford, England, 1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited