OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 5 — Feb. 10, 1999
  • pp: 788–794

Regularization methods for processing fringe-pattern images

José L. Marroquin, Mariano Rivera, Salvador Botello, Ramón Rodriguez-Vera, and Manuel Servin  »View Author Affiliations

Applied Optics, Vol. 38, Issue 5, pp. 788-794 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (1290 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A powerful technique for processing fringe-pattern images is based on Bayesian estimation theory with prior Markov random-field models. In this approach the solution of a processing problem is characterized as the minimizer of a cost function with terms that specify that the solution should be compatible with the available observations and terms that impose certain (prior) constraints on the solution. We show that, by the appropriate choice of these terms, one can use this approach in almost every processing step for accurate and robust interferogram demodulation and phase unwrapping.

© 1999 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(120.3180) Instrumentation, measurement, and metrology : Interferometry

Original Manuscript: August 11, 1998
Revised Manuscript: November 9, 1998
Published: February 10, 1999

José L. Marroquin, Mariano Rivera, Salvador Botello, Ramón Rodriguez-Vera, and Manuel Servin, "Regularization methods for processing fringe-pattern images," Appl. Opt. 38, 788-794 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Geman, D. Geman, “Stochastic relaxation, gibbs distributions and the bayesian restoration of images,” IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984). [CrossRef] [PubMed]
  2. J. Marroquin, S. Mitter, T. Poggio, “Probabilistic solution of ill-posed problems in computational vision,” J. Am. Stat. Assoc. 82, 76–89 (1987). [CrossRef]
  3. J. L. Marroquin, M. Servin, J. E. Figueroa, “Robust quadrature filters,” J. Opt. Soc. Am. A 14, 779–791 (1997). [CrossRef]
  4. J. L. Marroquin, M. Servin, R. Rodriguez-Vera, “Adaptive quadrature filters and the recovery of phase from fringe pattern images,” J. Opt. Soc. Am. A 14, 1742–1753 (1997). [CrossRef]
  5. J. L. Marroquin, M. Servin, R. Rodriguez-Vera, “Local phase from local orientation by solution of a sequence of linear systems,” J. Opt. Soc. Am. A 15, 1536–1544 (1998). [CrossRef]
  6. J. L. Marroquin, M. Servin, R. Rodriguez-Vera, “Adaptive quadrature filters for multiple phase-stepping images,” Opt. Lett. 23, 238–240 (1998). [CrossRef]
  7. M. Rivera, J. L. Marroquin, M. Servin, R. Rodriguez-Vera, “A fast algorithm for integrating inconsistent gradient fields,” Appl. Opt. 36, 8381–8390 (1997). [CrossRef]
  8. J. L. Marroquin, M. Tapia, R. Rodriguez-Vera, M. Servin, “Parallel algorithms for phase unwrapping based on Markov random field models,” J. Opt. Soc. Am. A 12, 2578–2585 (1995). [CrossRef]
  9. J. L. Marroquin, M. Rivera, S. Botello, “Adaptive quantization and filtering using Gauss–Markov measure field models,” in Bayesian Inference for Inverse Problems, A. Mohammad-Djafari, ed., Proc. SPIE3459, 238–249 (1998). [CrossRef]
  10. D. C. Ghiglia, L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107–117 (1994). [CrossRef]
  11. J. L. Marroquin, M. Rivera, “Quadratic regularization functionals for phase unwrapping,” J. Opt. Soc. Am. A 12, 2393–2400 (1995). [CrossRef]
  12. G. H. Gollub, C. F. Van Loan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1990).
  13. J. L. Marroquin, “Deterministic interactive particle models for image processing and computer graphics,” Comput. Vision Graph. Image Process. 55, 408–417 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited