OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 5 — Feb. 10, 1999
  • pp: 828–837

Designs of Optoelectronic Trinary Signed-Digit Multiplication by use of Joint Spatial Encodings and Optical Correlation

Abdallah K. Cherri  »View Author Affiliations


Applied Optics, Vol. 38, Issue 5, pp. 828-837 (1999)
http://dx.doi.org/10.1364/AO.38.000828


View Full Text Article

Acrobat PDF (183 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Trinary signed-digit (TSD) symbolic-substitution-based (SS-based) optical adders, which were recently proposed, are used as the basic modules for designing highly parallel optical multiplications by use of cascaded optical correlators. The proposed multiplications perform carry-free generation of the multiplication partial products of two words in constant time. Also, three different multiplication designs are presented, and new joint spatial encodings for the TSD numbers are introduced. The proposed joint spatial encodings allow one to reduce the SS computation rules involved in optical multiplication. In addition, the proposed joint spatial encodings increase the space–bandwidth product of the spatial light modulators of the optical system. This increase is achieved by reduction of the numbers of pixels in the joint spatial encodings for the input TSD operands as well as reduction of the number of pixels used in the proposed matched spatial filters for the optical multipliers.

© 1999 Optical Society of America

OCIS Codes
(070.4550) Fourier optics and signal processing : Correlators
(200.0200) Optics in computing : Optics in computing

Citation
Abdallah K. Cherri, "Designs of Optoelectronic Trinary Signed-Digit Multiplication by use of Joint Spatial Encodings and Optical Correlation," Appl. Opt. 38, 828-837 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-5-828


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. L. Johnson and M. A. Karim, Digital Design: A Pragmatic Approach (PWS-Kent, Boston, Mass., 1987).
  2. K. Hwang, Computer Arithmetic Principles: Architecture and Design (Wiley, New York, 1979).
  3. A. P. Gautzouilis, E. C. Malarkey, D. K. Davies, J. C. Bradley, and P. R. Beaudet, “Optical processing with residue LED/LD lookup tables,” Appl. Opt. 27, 1674–1681 (1988).
  4. G. A. De Biase and A. Massini, “High efficiency redundant binary number representations for parallel arithmetic on optical computers,” Opt. Laser Technol. 26, 219–224 (1994).
  5. K. Hwang and D. K. Panda, “High-radix symbolic substitution and superposition techniques for optical matrix algebraic computations,” Opt. Eng. 31, 2422–2433 (1992).
  6. A. K. Cherri and N. I. Khachab, “Canonical quaternary signed-digit arithmetic using optoelectronics symbolic substitution,” Opt. Laser Technol. 28, 397–403 (1996).
  7. M. S. Alam, Y. Ahuja, A. K. Cherri, and A. Chatterjea, “Symmetrically recoded quaternary signed-digit arithmetic using a shared content-addressable memory,” Opt. Eng. 35, 1141–1149 (1996).
  8. A. Avizienis, “Signed-digit number representations for fast parallel arithmetic,” IRE Trans. Electronic Computers, EC-10, 389–400 (1961).
  9. A. Huang, “Parallel algorithms for optical digital computers,” in Proceedings of the Tenth International Optical Computing Conference, S. Horvitz, ed. (IEEE Computer Society, Los Alamitos, Calif., 1983), pp. 13–17.
  10. R. P. Bocker, B. L. Drake, M. E. Lasher, and T. B. Henderson, “Modified signed-digit addition and subtraction using optical symbolic substitution,” Appl. Opt. 25, 2456–2457 (1986).
  11. A. K. Cherri and M. A. Karim, “Modified signed digit arithmetic using an efficient symbolic substitution,” Appl. Opt. 27, 3824–3827 (1988).
  12. H. Huang, M. Itoh, and T. Yatagai, “Modified signed-digit arithmetic based on redundant bit representation,” Appl. Opt. 33, 6146–6156 (1994).
  13. B. Ha and Y. Li, “Parallel modified signed-digit arithmetic using an optoelectronic shared content-addressable-memory processor,” Appl. Opt. 33, 3647–3662 (1994).
  14. Y. Li, H. Kim, A. Kostrzewski, and G. Eichmann, “Content-addressable-memory-based single-stage optical modified signed-digit arithmetic,” Opt. Lett. 14, 1254–1256 (1989).
  15. L. Liu, “Optoelectronics implementation of mathmatical morphology,” Opt. Lett. 14, 482–485 (1989).
  16. S. Zhou, S. Campbell, W. Wu, P. Yeh, and H.-K. Liu, “Modified signed-digit arithmetic for multi-input digital computing,” Appl. Opt. 33, 1507–1516 (1994).
  17. G. Eichmann, A. Kostrzewski, D. H. Kim, and Y. Li, “Optical higher-order symbolic recognition,” Appl. Opt. 29, 2135–2147 (1996).
  18. G. Li, L. Liu, L. Shao, and Y. Yin, “Optical negabinary addition with higher-order substitution rules,” Opt. Commun. 129, 323–330 (1996).
  19. G. Li, L. Liu, H. Cheng, and H. Jing, “Simplified quaternary signed-digit arithmetic and its optical implementation,” Opt. Commun. 173, 389–396 (1997).
  20. G. Li, L. Liu, H. Cheng, and X. Yan, “Parallel optical quaternary signed-digit multiplication and its use for matrix-vector operation,” Optik (Stuttgart/Weimar) 107, 165–172 (1998).
  21. A. K. Cherri, M. K. Habib, and M. S. Alam, “Optoelectronic recoded and nonrecoded trinary signed-digit adder using optical correlation,” Appl. Opt. 37, 2153–2163 (1998).
  22. A. K. Cherri, N. I. Khachab, and E. H. Ismail, “One-step optical trinary signed-digit arithmetic using redundant bit representations,” Opt. Laser Technol. 29, 281–290 (1997).
  23. A. A. S. Awwal, M. N. Islam, and M. A. Karim, “Modified signed-digit trinary arithmetic by using symbolic substitution,” Appl. Opt. 31, 1687–1694 (1994).
  24. D. P. Casasent and P. Woodford, “Symbolic substitution modified signed-digit optical adder,” Appl. Opt. 33, 1498–1506 (1994).
  25. M. S. Alam, “Parallel optical computing using recoded trinary signed-digit numbers,” Appl. Opt. 33, 4392–4397 (1994).
  26. D. P. Casasent and E. C. Botha, “Multifunctional optical processor based on symbolic substitution,” Opt. Eng. 28, 425–433 (1989).
  27. D. P. Casasent and E. C. Botha, “Optical correlator production system neural net,” Appl. Opt. 31, 1030–1040 (1992).
  28. E. Botha, J. Richards, and D. P. Casassent, “Optical laboratory morphological inspection processor,” Appl. Opt. 28, 5342–5350 (1989).
  29. D. P. Casasent and R. Sturgill, “Optical hit-or-miss morphological transforms for ATR,” in Applications of Digital Image Processing XII, J. Neffs, ed., Proc. SPIE 1153, 500–510 (1989).
  30. K. Al-Ghoneim and D. P. Casasent, “High-accuracy pipelined iterative-tree optical multiplication,” Appl. Opt. 33, 4392–4397 (1994).
  31. A. K. Cherri and M. A. Karim, “Symbolic substitution based operations using holograms: multiplication and histogram equalization,” Opt. Eng. 28, 638–644 (1989).
  32. A. K. Cherri and M. A. Karim, “Edge detection using symbolic substitution,” Opt. Commun. 74, 10–14 (1989).
  33. A. K. Cherri and M. A. Karim, “Optical symbolic substitution: edge detection using Prewitt, Sobel, and Roberts operators,” Appl. Opt. 28, 4644–4648 (1989).
  34. A. Louri, “Throughput enhancement for optical symbolic substitution systems,” Appl. Opt. 29, 2979–2980 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited