OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 5 — Feb. 10, 1999
  • pp: 838–846

Field-programmable smart-pixel arrays: design, VLSI implementation, and applications

Sherif S. Sherif, Stefan K. Griebel, Albert Au, Dennis Hui, Ted H. Szymanski, and H. Scott Hinton  »View Author Affiliations


Applied Optics, Vol. 38, Issue 5, pp. 838-846 (1999)
http://dx.doi.org/10.1364/AO.38.000838


View Full Text Article

Enhanced HTML    Acrobat PDF (547 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A smart-pixel array is a two-dimensional array of optoelectronic devices that combine optical inputs and outputs with electronic processing circuitry. A field-programmable smart-pixel array (FP-SPA) is a smart-pixel array capable of having its electronic functionality dynamically programmed in the field. Such devices could be used in a diverse range of applications, including optical switching, optical digital signal processing, and optical image processing. We describe the design, VLSI implementation, and applications of a first-generation FP-SPA implemented with the 0.8-µm complementary metal-oxide semiconductor–self-electro-optic effect device technology made available through the Lucent Technologies–Advanced Research Projects Agency Cooperative (Lucent/ARPA/COOP) program. We report spice simulations and experimental results of two sample applications: In the first application, we configure this FP-SPA as an array of free-space optical binary switches that can be used in optical multistage networks. In the second, we configure the device as an optoelectronic transceiver for a dynamically reconfigurable free-space intelligent optical backplane called the hyperplane. We also describe the testing setup and the electrical and the optical tests that demonstrate the correct functionality of the fabricated device. Such devices have the potential to reduce significantly the need for custom design and fabrication of application-specific optoelectronic devices in the same manner that field-programmable gate arrays have largely eliminated the need for custom design and fabrication of application-specific gate arrays, except in the most demanding applications.

© 1999 Optical Society of America

OCIS Codes
(200.2610) Optics in computing : Free-space digital optics
(200.3050) Optics in computing : Information processing
(250.0250) Optoelectronics : Optoelectronics
(250.3140) Optoelectronics : Integrated optoelectronic circuits

History
Original Manuscript: June 17, 1998
Revised Manuscript: November 10, 1998
Published: February 10, 1999

Citation
Sherif S. Sherif, Stefan K. Griebel, Albert Au, Dennis Hui, Ted H. Szymanski, and H. Scott Hinton, "Field-programmable smart-pixel arrays: design, VLSI implementation, and applications," Appl. Opt. 38, 838-846 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-5-838

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited