OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 6 — Feb. 20, 1999
  • pp: 1021–1039

Analytical waveform generation from small objects in lidar bathymetry

H. Michael Tulldahl and K. Ove Steinvall  »View Author Affiliations

Applied Optics, Vol. 38, Issue 6, pp. 1021-1039 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (480 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a model to simulate receiver waveforms from an airborne sea-depth-sounding lidar to compare the influence that is due to different shapes of objects placed on the sea bottom. The objects are of size 1 m3, and the bottom depths are 5–12 m. We use an existing analytical beam-propagation model and divide the bottom into squares. For each element on the bottom grid we create a transmitted and a reflected waveform. The waveforms are summed, yielding a total contribution from all bottom elements. We compare two object types, cylinder and cube, and find that the difference in the receiver waveform is small between these objects. Simulated waveforms are compared with experimental data from the Swedish Hawk Eye system and show good agreement.

© 1999 Optical Society of America

OCIS Codes
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(010.3640) Atmospheric and oceanic optics : Lidar
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(290.7050) Scattering : Turbid media

Original Manuscript: May 27, 1998
Revised Manuscript: October 26, 1998
Published: February 20, 1999

H. Michael Tulldahl and K. Ove Steinvall, "Analytical waveform generation from small objects in lidar bathymetry," Appl. Opt. 38, 1021-1039 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. C. Guenther, R. W. L. Thomas, “Prediction and correction of propagation-induced depth measurement biases plus signal attenuation and beam spreading for airborne laser hydrography,” (National Oceanic and Atmospheric Administration, Rockville, Md., 1984).
  2. K. O. Steinvall, K. R. Koppari, U. C. M. Karlsson, “Experimental evaluation of an airborne depth-sounding lidar,” Opt. Eng. 32, 1307–1321 (1993). [CrossRef]
  3. T. Kaijser, “A Monte Carlo simulation model of airborne hydrographic laser systems,” (Defence Research Establishment, Linköping, Sweden, 1990).
  4. K. O. Steinvall, K. R. Koppari, U. C. M. Karlsson, “Simulation of laser bathymetry for irregular bottoms,” (Defence Research Establishment, Linköping, Sweden, 1994).
  5. W. H. Wells, “Diffusion of light in the sea,” Opt. Eng. 16, 112–127 (1977). [CrossRef]
  6. O. V. Kopelevich, I. M. Levin, “The main problems of the optics of the sea,” J. Opt. Technol. 64, 230–239 (1997).
  7. D. Arnush, “Underwater light-beam propagation in the small-angle-scattering approximation,” J. Opt. Soc. Am. 62, 1109–1111 (1972). [CrossRef]
  8. L. R. Thebaud, S. J. Gayer, “Calculation of lidar beam spread in stratified media,” in Ocean Optics VII, M. A. Blizard, ed., Proc. SPIE489, 236–246 (1984). [CrossRef]
  9. R. F. Lutomirski, “An analytic model for optical beam propagation through the marine boundary layer,” in Ocean Optics V, M. B. White, ed., Proc. SPIE160, 110–122 (1978). [CrossRef]
  10. V. J. Feigels, “Lidars for oceanological research: criteria for comparison, main limitations, perspectives,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 473–484 (1992). [CrossRef]
  11. H. R. Gordon, “Interpretation of airborne oceanic lidar: effects of multiple scattering,” Appl. Opt. 21, 2996–3001 (1982). [CrossRef] [PubMed]
  12. K. O. Steinvall, K. R. Koppari, U. C. M. Karlsson, “Airborne laser depth sounding. System aspects and performance,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 392–412 (1994). [CrossRef]
  13. G. C. Guenther, “Airborne laser hydrography, system design and performance factors,” (National Oceanic and Atmospheric Administration, Rockville, Md., 1985).
  14. L. S. Dolin, I. M. Levin, “Optics, underwater,” in Vol. 12 of Encyclopedia of Applied Physics, G. L. Trigg, ed. (VCH, New York, 1995), pp. 571–601.
  15. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, T. Limperis, “Geometrical considerations and nomenclature for reflectance,” NBS Monog. 160, D.C. (1977).
  16. E. A. Bucher, “Computer simulation of light pulse propagation for communication through thick clouds,” Appl. Opt. 12, 2391–2400 (1973). [CrossRef] [PubMed]
  17. J. W. McLean, J. D. Freeman, R. E. Walker, “Beam spread function with time dispersion,” Appl. Opt. 37, 4701–4711 (1998). [CrossRef]
  18. H. C. van de Hulst, G. W. Kattawar, “Exact spread function for a pulsed collimated beam in a medium with small-angle scattering,” Appl. Opt. 33, 5820–5829 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited