OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 6 — Feb. 20, 1999
  • pp: 1046–1052

Geometrical Optics Calculation of Inelastic Scattering on Large Particles

Nadejda Velesco and Gustav Schweiger  »View Author Affiliations


Applied Optics, Vol. 38, Issue 6, pp. 1046-1052 (1999)
http://dx.doi.org/10.1364/AO.38.001046


View Full Text Article

Acrobat PDF (690 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A geometrical optics approximation was used for calculations of inelastic (Raman and fluorescent) scattering on particles with large size parameters. The inelastic part of the radiation was obtained by use of the principle of ray reversibility. The technique presented simplifies the computations and provides a geometric interpretation of how far-field patterns can be calculated by use of the internal field distributions. The numerical results for homogeneous spherical particles are compared with the classic dipole solution.

© 1999 Optical Society of America

OCIS Codes
(080.1510) Geometric optics : Propagation methods
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles
(290.5860) Scattering : Scattering, Raman

Citation
Nadejda Velesco and Gustav Schweiger, "Geometrical Optics Calculation of Inelastic Scattering on Large Particles," Appl. Opt. 38, 1046-1052 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-6-1046


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. Schweiger, “Raman scattering on single aerosol particles and on flowing aerosols: a review,” J. Aerosol Sci. 21, 483–509 (1990).
  2. H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
  3. H. Chew, M. Sculley, M. Kerker, P. J. McNulty, and D. D. Cooke, “Raman and fluorescent scattering by molecules embedded in small particles: results for coherent optical processes,” J. Opt. Soc. Am. 68, 1686–1689 (1978).
  4. M. Kerker, P. J. McNulty, M. Sculley, H. Chew, and D. D. Cooke, “Raman and fluorescent scattering by molecules embedded in small particles: numerical results for incoherent optical processes,” J. Opt. Soc. Am. 68, 1676–1686 (1978).
  5. M. Kerker and S. D. Druger, “Raman and fluorescent scattering by molecules embedded in spheres with radii up to several multiples of the wavelength,” Appl. Opt. 18, 1172–1179 (1979).
  6. H. Chew, M. Kerker, and P. J. McNulty, “Raman and fluorescent scattering by molecules embedded in concentric spheres,” J. Opt. Soc. Am. 66, 440–444 (1976).
  7. H. Chew, D. D. Cooke, and M. Kerker, “Raman and fluorescent scattering by molecules embedded in dielectric cylinders,” Appl. Opt. 19, 44–52 (1980).
  8. D. S. Wang, M. Kerker, and H. Chew, “Raman and fluorescent scattering by molecules embedded in dielectric spheroids,” Appl. Opt. 19, 2315–2328 (1980).
  9. M. Seaver and J. R. Peele, “Noncontact fluorescence thermometry of acoustically levitated water drops,” Appl. Opt. 29, 4956–4961 (1990).
  10. A. S. Kwok, C. F. Wood, and R. K. Chang, “Fluorescence imaging of CO2 laser-heated droplets,” Opt. Lett. 15, 664–666 (1990).
  11. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  12. A. Ungut, G. Grehan, and G. Gouesbet, “Comparisons between geometrical optics and Lorenz–Mie theory,” Appl. Opt. 20, 2911–2918 (1981).
  13. W. J. Glantschnig and S. H. Chen, “Light scattering from water droplets in the geometrical optics approximation,” Appl. Opt. 20, 2499–2509 (1981).
  14. E. A. Hovenac, “Calculation of far-field scattering from nonspherical particles using a geometrical optics approach,” Appl. Opt. 30, 4739–4746 (1991).
  15. J. A. Lock, “Ray scattering by an arbitrarily oriented spheroid. I. Diffraction and specular reflection,” Appl. Opt. 35, 500–514 (1996).
  16. J. A. Lock, “Ray scattering by an arbitrarily oriented spheroid. II. Transmission and cross-polarization effects,” Appl. Opt. 35, 515–531 (1996).
  17. K. Muinonen, T. Nousianen, P. Fast, K. Lumme, and J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577–601 (1996).
  18. J. A. Lock and E. A. Hovenac, “Internal caustic structure of illuminated liquid droplets,” J. Opt. Soc. Am. A 8, 1541–1552 (1991).
  19. V. Srivastava and M. A. Jarzembski, “Laser-induced stimulated Raman scattering in the forward direction of a droplet: comparison of Mie theory with geometrical optics,” Opt. Lett. 16, 126–128 (1991).
  20. M. A. Jarzembski and V. Srivastava, “Electromagnetic field enhancement in small liquid droplets using geometrical optics,” Appl. Opt. 28, 4962–4965 (1989).
  21. D. Q. Chowdhury, P. W. Barber, and S. C. Hill, “Energy density distribution inside large nonabsorbing spheres by using Mie theory and geometrical optics,” Appl. Opt. 31, 3518–3523 (1992).
  22. N. Velesco, T. Kaiser, and G. Schweiger, “Computation of the internal field of a large spherical particle by use of the geometrical-optics approximation,” Appl. Opt. 36, 8724–8728 (1997).
  23. G. Roll, T. Kaiser, S. Lange, and G. Schweiger, “Ray interpretation of multipole fields in spherical cavities,” J. Opt. Soc. Am. A 15, 2879–2891 (1998).
  24. J. Zhang and D. R. Alexander “Hybrid inelastic-scattering models for particle thermometry: unpolarized emissions,” Appl. Opt. 31, 7132–7139 (1992).
  25. J. Zhang and D. R. Alexander “Hybrid inelastic-scattering models for particle thermometry: polarized emissions,” Appl. Opt. 31, 7140–7146 (1992).
  26. S. C. Hill, H. I. Saleheen, M. D. Barnes, W. B. Whitten, and J. M. Ramsey, “Modeling fluorescence collection from single molecules in microspheres: effects of position, orientation, and frequency,” Appl. Opt. 35, 6278–6288 (1996).
  27. S. C. Hill, G. Videen, and J. D. Pendleton, “Reciprocity method for obtaining the far fields generated by a source inside or near a microparticle,” J. Opt. Soc. Am. B 14, 2522–2529 (1997).
  28. W. C. Chew, Waves and Fields in Inhomogeneous Media (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 20–28 Chap. 7.
  29. E. Hecht, Optics (Addison-Wesley, New York, 1987).
  30. G. Schweiger, “Raman scattering on microparticles: size dependence,” J. Opt. Soc. Am. B 8, 1770–1778 (1991).
  31. J. Popp, M. Trunk, M. Lankers, I. Hartmann, K. Schaschek, and W. Kiefer, “Observability of morphology-dependent output resonances in the Raman spectra of optically levitated microdroplets,” J. Raman Spectrosc. 28, 531–536 (1997).
  32. I. Hartmann, M. Lankers, J. Popp, M. Trunk, E. Urlaub, and W. Kiefer, “Simulation of morphology-dependent resonances in the Raman spectra of optically levitated microspheres,” J. Raman Spectrosc. 28, 547–550 (1997).
  33. G. Schweiger, “Observation of input and output structure resonances in the Raman spectrum of a single spheroid dielectric microparticle,” Opt. Lett. 15, 156–158 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited