OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 6 — Feb. 20, 1999
  • pp: 908–915

Vertical Variability of Aerosol Backscatter from an Airborne-Focused Continuous-Wave CO2 Lidar at 9.1-µm Wavelength

Maurice A. Jarzembski, Vandana Srivastava, and Jeffry Rothermel  »View Author Affiliations

Applied Optics, Vol. 38, Issue 6, pp. 908-915 (1999)

View Full Text Article

Acrobat PDF (2353 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Atmospheric aerosol backscatter measurements taken with a continuous-wave focused Doppler lidar at 9.1-μm wavelength were obtained over western North America and the Pacific Ocean from 13 to 26 September 1995 as part of a NASA airborne mission. Backscatter variability was measured for ~52 flight hours, covering an equivalent horizontal distance of ~30,000 km in the troposphere. Some quasi-vertical backscatter profiles were also obtained during various ascents and descents at altitudes that ranged from ~0.1 to 12 km. Similarities and differences for aerosol loading over land and ocean were observed. A midtropospheric aerosol backscatter background mode near 3 × 10−11 to 1 × 10−10 m−1 sr−1 was obtained, which is consistent with those of previous airborne and ground-based data sets.

[Optical Society of America ]

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar
(290.0290) Scattering : Scattering
(290.1350) Scattering : Backscattering

Maurice A. Jarzembski, Vandana Srivastava, and Jeffry Rothermel, "Vertical Variability of Aerosol Backscatter from an Airborne-Focused Continuous-Wave CO2 Lidar at 9.1-µm Wavelength," Appl. Opt. 38, 908-915 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. E. Penner, R. J. Charlson, J. M. Hales, N. Laulainen, R. Leifer, T. Novakov, J. Ogren, L. F. Radke, S. E. Schwartz, and L. Travis, “Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols,” Bull. Am. Meteorol. Soc. 75, 375–400 (1994).
  2. J. T. Kiehl and B. P. Brieglab, “The relative roles of sulfate aerosols and greenhouse gases in climate forcing,” Science 260, 311–314 (1993).
  3. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, Jr., J. E. Hansen, and D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
  4. R. J. Charlson, J. Langner, H. Rodhe, C. B. Leovy, and S. G. Warren, “Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols,” Tellus 43AB, 152–163 (1991).
  5. J. M. Prospero, R. J. Charlson, V. Mohnen, R. Jaenicke, A. C. Delany, J. Moyers, W. Zoller, and K. Rahn, “The atmospheric aerosol system: an overview,” Rev. Geophys. Space Phys. 21, 1607–1629 (1983).
  6. J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, and J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
  7. R. T. Menzies and D. M. Tratt, “Airborne lidar observations of tropospheric aerosols during the Global Backscatter Experiment (GLOBE) Pacific circumnavigation missions of 1989 and 1990,” J. Geophys. Res. 102, 3701–3714 (1997).
  8. D. M. Tratt and R. T. Menzies, “Recent climatological trends in atmospheric aerosol backscatter derived from the Jet Propulsion Laboratory multiyear backscatter profile database,” Appl. Opt. 33, 424–430 (1994).
  9. R. T. Menzies and D. M. Tratt, “Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter,” Appl. Opt. 33, 5698–5711 (1994).
  10. G. M. Ancellet, R. T. Menzies, and D. M. Tratt, “Atmospheric backscatter vertical profiles at 9.2 and 10.6 μm: a comparative study,” Appl. Opt. 27, 4907–4912 (1988).
  11. M. J. Post, “Aerosol backscattering profiles at CO2 wavelengths: the NOAA data base,” Appl. Opt. 23, 2507–2509 (1984).
  12. R. T. Menzies, M. J. Kavaya, P. H. Flamant, and D. A. Haner, “Atmospheric aerosol backscatter measurements using a tunable coherent CO2 lidar,” Appl. Opt. 23, 2510–2517 (1984).
  13. V. Srivastava, A. D. Clarke, M. A. Jarzembski, and J. Rothermel, “Comparison of modeled backscatter using measured aerosol microphysics with focused cw lidar data over Pacific,” J. Geophys. Res. 102, 16,605–16,617 (1997).
  14. V. Srivastava, D. A. Bowdle, M. A. Jarzembski, J. Rothermel, D. M. Chambers, and D. R. Cutten, “High resolution remote sensing of sulfate aerosols from CO2 lidar backscatter,” Geophys. Res. Lett. 22, 2373–2376 (1995).
  15. S. B. Alejandro, G. G. Koenig, D. Bedo, T. Swirbalus, R. Frelin, and J. Woffinden, J. M. Vaughan, D. W. Brown, R. Callan, P. H. Davies, R. Foord, C. Nash, and D. J. Wilson, “Atlantic atmospheric aerosol studies. 1. Program overview and airborne lidar,” J. Geophys. Res. 100, 1035–1041 (1995).
  16. J. M. Vaughan, D. W. Brown, C. Nash, S. B. Alejandro, and G. G. Koenig, “Atlantic atmospheric aerosol studies. 2. Compendium of airborne backscatter measurements at 10.6 μm,” J. Geophys. Res. 100, 1043–1065 (1995).
  17. D. A. Bowdle, J. Rothermel, J. M. Vaughan, D. W. Brown, and M. J. Post, “Aerosol backscatter measurements at 10.6 micrometers with airborne and ground-based CO2 Doppler lidars over the Colorado high plains. 1. Lidar intercomparison,” J. Geophys. Res. 96, 5327–5335 (1991).
  18. J. L. Gras and W. D. Jones, “Australian aerosol backscatter survey,” Appl. Opt. 28, 852–856 (1989).
  19. R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, and P. C. Sinclair, “Aerosol backscatter coefficient profiles measured at 10.6 μm,” J. Appl. Meterol. 20, 184–194 (1981).
  20. D. A. Bowdle and D. E. Fitzjarrald, “The GLObal Backscatter Experiment (GLOBE) program,” in Coherent Laser Radar: Technology and Applications, Vol. 16 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 108–111 (1987).
  21. J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, and R. M. Banta, “The Multi-center Airborne Coherent Atmospheric Wind Sensor, MACAWS,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
  22. M. A. Jarzembski, V. Srivastava, and D. M. Chambers, “Lidar calibration technique using laboratory-generated aerosols,” Appl. Opt. 35, 2096–2108 (1996).
  23. J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, and W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1996).
  24. M. A. Jarzembski, V. Srivastava, E. W. McCaul, Jr., G. J. Jedlovec, R. J. Atkinson, R. F. Pueschel, and D. R. Cutten, “Comparison of lidar backscatter with particle distribution and GOES-7 data in Hurricane Juliette,” Geophys. Res. Lett. 24, 1063–1066 (1997).
  25. J. Rothermel, D. A. Bowdle, and V. Srivastava, “Mid-tropospheric aerosol backscatter background mode over the Pacific Ocean at 9.1 μm wavelength,” Geophys. Res. Lett. 23, 281–284 (1996).
  26. J. Rothermel, D. A. Bowdle, J. M. Vaughan, and M. J. Post, “Evidence of a tropospheric aerosol backscatter background mode,” Appl. Opt. 28, 1040–1042 (1989).
  27. D. A. Bowdle, “A global-scale model of aerosol backscatter at CO2 wavelengths for satellite-based lidar sensors,” Second Conference on Satellite Meteorology/Remote Sensing and Applications, preprint volume (American Meteorological Society, Boston, Mass., (1986), pp. 303–306.
  28. W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, and J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
  29. M. J. Kavaya, G. D. Spiers, E. S. Lobl, J. Rothermel, and V. W. Keller, “Direct global measurements of tropospheric winds employing a simplified coherent laser radar using fully scalable technology and technique,” in Space Instrumentation and Dual-Use Technologies, F. A. Allahadadi, M. P. Chrisp, C. R. Giuliano, W. P. Latham, and J. F. Shanley, eds., Proc. SPIE 2214, 237–249 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited