OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 6 — Feb. 20, 1999
  • pp: 945–954

Urban boundary-layer height determination from lidar measurements over the Paris area

Laurent Menut, Cyrille Flamant, Jacques Pelon, and Pierre H. Flamant  »View Author Affiliations


Applied Optics, Vol. 38, Issue 6, pp. 945-954 (1999)
http://dx.doi.org/10.1364/AO.38.000945


View Full Text Article

Enhanced HTML    Acrobat PDF (476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Paris area is strongly urbanized and is exposed to atmospheric pollution events. To understand the chemical and physical processes that are taking place in this area it is necessary to describe correctly the atmospheric boundary-layer (ABL) dynamics and the ABL height evolution. During the winter of 1994–1995, within the framework of the Etude de la Couche Limite Atmosphérique en Agglomération Parisienne (ECLAP) experiment, the vertical structure of the ABL over Paris and its immediate suburbs was extensively documented by means of lidar measurements. We present methods suited for precise determination of the ABL structure’s temporal evolution in a dynamic environment as complex as the Paris area. The purpose is to identify a method that can be used on a large set of lidar data. We compare commonly used methods that permit ABL height retrievals from backscatter lidar signals under different meteorological conditions. Incorrect tracking of the ABL depth’s diurnal cycle caused by limitations in the methods is analyzed. The study uses four days of the ECLAP experiment characterized by different meteorological and synoptic conditions.

© 1999 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(010.3920) Atmospheric and oceanic optics : Meteorology
(010.7030) Atmospheric and oceanic optics : Troposphere
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: July 28, 1998
Revised Manuscript: November 18, 1998
Published: February 20, 1999

Citation
Laurent Menut, Cyrille Flamant, Jacques Pelon, and Pierre H. Flamant, "Urban boundary-layer height determination from lidar measurements over the Paris area," Appl. Opt. 38, 945-954 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-6-945


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Gryning, A. M. M. Holtslag, J. S. Irwin, B. Sivertsen, “Applied dispersion modelling based on meteorological scaling parameters,” Atmos. Environ. 21, 79–89 (1987). [CrossRef]
  2. K. E. Kunkel, E. W. Eloranta, S. T. Shipley, “Lidar observations of the convective boundary layer,” J. Appl. Meteorol. 16, 1306–1311 (1977). [CrossRef]
  3. R. B. Stull, E. W. Eloranta, “Boundary Layer Experiment 1983,” Bull. Am. Meteorol. Soc. 65, 450–456 (1984). [CrossRef]
  4. R. Boers, E. W. Eloranta, R. L. Coulter, “Lidar observations of mixed layer dynamics: tests of parametrized entrainment models of mixed layer growth rate,” J. Climate Appl. Meteorol. 23, 247–266 (1984). [CrossRef]
  5. S. H. Melfi, J. D. Sphinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean,” J. Climate Appl. Meteorol. 24, 806–821 (1985). [CrossRef]
  6. R. Boers, E. W. Eloranta, “Lidar measurements of the atmospheric entrainment zone and potential temperature jump across the top of the mixed layer,” Boundary-Layer Meteorol. 34, 357–375 (1986). [CrossRef]
  7. R. B. Stull, “A convective transport theory for surface fluxes,” J. Atmos. Sci. 51, 3–22 (1994). [CrossRef]
  8. C. Flamant, J. Pelon, “Boundary layer structure over the Mediterranean during a Tramontane event,” Q. J. R. Meteorol. Soc. 122, 1741–1778 (1996). [CrossRef]
  9. C. Flamant, J. Pelon, P. H. Flamant, P. Durand, “Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary-layer,” Boundary-Layer Meteorol. 83, 247–284 (1997). [CrossRef]
  10. E. Dupont, J. Pelon, C. Flamant, “Study of the moist convective boundary layer structure by backscatter lidar,” Boundary-Layer Meteorol. 69, 1–25 (1994). [CrossRef]
  11. W. P. Hooper, E. Eloranta, “Lidar measurements of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon,” J. Climate Appl. Meteorol. 25, 990–1001 (1986). [CrossRef]
  12. E. Dupont, “Etude méthodologique et expérimentale de la couche limite atmosphérique par télédétection laser,” Ph.D. dissertation (Université Pierre et Marie Curie, Paris, 1991).
  13. A. K. Piironen, E. W. Eloranta, “Convective boundary layer mean depths and cloud geometrical properties obtained from volume imaging lidar data,” J. Geophys. Res. 100, 25,569–25,576 (1995). [CrossRef]
  14. J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sens. 31, 48–55 (1993). [CrossRef]
  15. E. Dupont, L. Menut, B. Carissimo, L. Pelon, P. H. Flamant, “Observations of the atmospheric boundary layer in Paris and its rural suburbs: the ECLAP experiment,” Atmos. Environ. 33, 979–994 (1999). [CrossRef]
  16. L. Menut, “Etude expérimentale et théorique de la couche limite atmosphérique en agglomération Parisienne,” Ph.D. dissertation (Université Pierre et Marie Curie, Paris, 1997).
  17. J. W. Deardorff, G. E. Willis, B. H. Stockton, “Laboratory studies of the entrainment zone of a convectively mixed layer,” J. Fluid Mech. 100, 41–64 (1980). [CrossRef]
  18. R. Boers, S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary layer model test,” Boundary-Layer Meteorol. 39, 41–51 (1987). [CrossRef]
  19. C. Werner, “Lidar measurements of the atmospheric aerosol as a function of relative humidity,” Opto-Electron. 4, 125–132 (1972). [CrossRef]
  20. T. D. Crum, R. B. Stull, E. W. Eloranta, “Coincident lidar and aircraft observations of the entrainment into thermals and mixed layers,” J. Climate Appl. Meteorol. 26, 774–788 (1977). [CrossRef]
  21. R. B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer Academic, Dordrecht; The Netherlands, 1988). [CrossRef]
  22. A. M. M. Holtslag, D. DeBruijn, C. Pan, “A high resolution air mass transformation model for short-range weather forecasting,” Mon. Weather Rev. 118, 1561–1575 (1990). [CrossRef]
  23. J. E. Pleim, A. Xiu, “Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models,” J. Appl. Meteorol. 34, 16–32 (1988). [CrossRef]
  24. D. H. P. Vogelezang, A. A. M. Holtslag, “Evaluation and model impacts of alternative boundary-layer height formulations,” Boundary-Layer Meteorol. 81, 245–269 (1996). [CrossRef]
  25. D. I. Cooper, W. E. Eichinger, “Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations,” J. Geophys. Res. 99, 22,937–22,948 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited