OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 6 — Feb. 20, 1999
  • pp: 955–962

Holography as a technique for the study of photopolymerization kinetics in dry polymeric films with a nonlinear response

Salvador Blaya, Luis Carretero, Ricardo Mallavia, Antonio Fimia, and Roque Fernando Madrigal  »View Author Affiliations


Applied Optics, Vol. 38, Issue 6, pp. 955-962 (1999)
http://dx.doi.org/10.1364/AO.38.000955


View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method is reported that makes use of holography to study the kinetics of the radical photopolymerization of acrylamide in a polyvinyl alcohol when the Kogelnik theory is applied. A mechanism of unimolecular termination by the radicals that initiate the polymerization reaction is postulated to calculate the quantum yield, the molar-extinction coefficient, the index of refraction, and the thickness of the film. The conversion percentage of monomers is obtained along with the ratio of rate constants of the mechanism of polymerization from the nonlinear fit of the transmittance curves, their angular response, and the temporal evolution of diffraction efficiency. Compared with previous holographic techniques, this method has the advantage of predicting these chemical parameters using all the data points of the temporal diffraction efficiency variation rather than being restricted to the linear zone of these curves. In this way the whole reaction process, not just the initial process, is taken into account.

© 1999 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(160.5470) Materials : Polymers
(310.0310) Thin films : Thin films

History
Original Manuscript: January 20, 1998
Revised Manuscript: October 22, 1998
Published: February 20, 1999

Citation
Salvador Blaya, Luis Carretero, Ricardo Mallavia, Antonio Fimia, and Roque Fernando Madrigal, "Holography as a technique for the study of photopolymerization kinetics in dry polymeric films with a nonlinear response," Appl. Opt. 38, 955-962 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-6-955


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Odian, Principles of Polymerization (Wiley, New York, 1993), pp. 198–331.
  2. R. Sastre, M. Conde, J. L. Mateo, “Photoinitiated bulk polymerization of lauryl acrylate by N-acetyl-4-nitro-1-naphthylamine in the presence of N,N′-dimethylaniline,” J. Photochem. Photobiol. A. Chem. 44, 111–122 (1988). [CrossRef]
  3. G. Oster, N. Yang, “Photopolymerization of vinyl monomers,” Chem. Rev. 68, 125–151 (1968). [CrossRef]
  4. L. Hesselink, M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–651 (1993). [CrossRef]
  5. H. J. Caulfield, ed., Handbook of Optical Holography (Academic, London, 1979), pp. 415–462.
  6. G. T. Sincerbox, Laser Beam Theory (Marcel Dekker, New York, 1985), pp. 1–62.
  7. W. H. Lee, “Holographic optical head for compact disk applications,” Opt. Eng. 28, 650–653 (1989). [CrossRef]
  8. R. Arrathoon, “Historical perspectives: optical crossbars and optical computing,” in Digital Optical Computing, R. Arrathoon, ed., Proc. SPIE752, 1–11 (1987).
  9. M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic-data-storage materials,” Mater. Res. Soc. Bull. 9, 50–60 (1996).
  10. S. Schloter, D. Haarer, “Photorefractive materials for holographic interferometry,” Adv. Mater. 9, 991–993 (1997). [CrossRef]
  11. R. A. Lessard, R. Changkakoti, G. Manivannan, “Holographic recording materials,” in Processes in Photorefractive Polymers, V. V. Krongauz, A. D. Trifunac, eds. (Chapman & Hall, London, 1995, pp. 307–367.
  12. C. Braüchle, D. M. Burland, “Holographic methods for the investigation of photochemical and photophysical properties of molecules,” Angew. Chem. Int. Ed. Engl. 22, 582–598 (1983). [CrossRef]
  13. D. M. Burland, “Applications of holography in the investigation of photochemical reactions,” Acc. Chem. Res. 16, 218–224 (1983). [CrossRef]
  14. D. M. Burland, C. Braüchle, “The use of holography to investigate complex photochemical reactions,” J. Chem. Phys. 76, 4502–4512 (1982). [CrossRef]
  15. F. W. Deeg, J. Pinsl, C. Braüchle, J. Voitländer, “The evaluation of photochemical quantum yields by holography,” J. Chem. Phys. 79, 1229–1234 (1983). [CrossRef]
  16. F. W. Deeg, J. Pinsl, C. Braüchle, “New grating experiments in the study of irreversible photochemical reactions,” IEEE J. Quantum Electron. QE-22, 1476–1481 (1986). [CrossRef]
  17. F. W. Deeg, J. Pinsl, C. Braüchle, “Two-photon four-level hologram recording in poly-(alkyl-α-cyanoacrylates),” Appl. Phys. B 40, 77–84 (1986). [CrossRef]
  18. C. Braüchle, D. M. Burland, G. C. Bjorklund, “Study of the photolysis of dimethyl-s-tetrazine using a holographic technique,” J. Am. Chem. Soc. 103, 2516–2519 (1981).
  19. D. M. Burland, G. C. Bjorklund, D. C. Alvarez, “Use of holography to investigate photochemical reactions,” J. Am. Chem. Soc. 102, 7119–7120 (1980). [CrossRef]
  20. J. Pinsl, M. Gehrtz, A. Reggel, C. Braüchle, “Photochemistry of tertiary nitrosoalkanes in solid polymer matrices: a promising new class of organic materials for holographic recording with semiconductor lasers,” J. Am. Chem. Soc. 109, 6479–6486 (1987). [CrossRef]
  21. J. Pinsl, M. Gehrtz, C. Braüchle, “Phase-modulated holography: a new technique for investigation of solid-state photochemistry and hologram formation mechanism,” J. Phys. Chem. 90, 6754–6756 (1986). [CrossRef]
  22. C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach,” Macromolecules 22, 791–799 (1989). [CrossRef]
  23. G. M. Karpov, T. N. Obukhovskii, T. N. Smirnova, T. A. Sarbaev, “Theory of hologram formation in photopolymer materials with a polymerization diffusive recording mechanism: II. Regularities of the process and criterion of holographic recording efficiency,” Opt. Spectrosc. 82, 131–137 (1997).
  24. G. M. Karpov, T. N. Obukhovskii, T. N. Smirnova, “Theory of hologram formation in photopolymer materials with a polymerization diffusive recording mechanism: I. General system of equations,” Opt. Specrosc. 81, 947–952 (1996) and the references cited therein.
  25. H. Smith, Principles of Holography, (Wiley, New York, 1975), pp. 112–122.
  26. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  27. R. H. Kayser, R. H. Young, “The photoreduction of methylene blue and amines-I. a flash photolysis study of the reaction between triplet methylene blue and amines,” Photochem. Photobiol. 24, 395–401 (1976). [CrossRef]
  28. S. G. Cohen, A. Parola, G. H. Parsons, “Photoreduction by amines,” Chem. Rev. 73, 141–161 (1973). [CrossRef]
  29. N. J. Turro, Modern Molecular Photochemistry (University Science, Mill Valley, Calif., 1991), pp. 76–152.
  30. T. Lyubimova, P. G. Righetti, “On the kinetics of photopolymerization: a theoretical study,” Electrophoresis 14, 191–201 (1993). [CrossRef] [PubMed]
  31. S. Piazolla, B. K. Jenkins, “Holographic grating formation in photopolymers,” Opt. Lett. 21, 1075–1077 (1996). [CrossRef]
  32. K. Levenberg, “A method for the solution of certain problems of least squares,” Q. Appl. Math. 2, 164–168 (1944).
  33. D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math. 11, 431–441 (1963). [CrossRef]
  34. L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496–4499 (1998). [CrossRef]
  35. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1987), pp. 40–41.
  36. L. Carretero, S. Blaya, A. Fimia, A. Beléndez, R. F. Madrigal, “Real time transmittance function in photopolymers of acrylamide composition: noise gratings,” in Holographic and Diffractive Techniques, G. J. Dausmann, ed., Proc. SPIE2951, 20–24 (1996). [CrossRef]
  37. T. Kubota, “The bending of interference fringes inside a hologram,” Opt. Acta 26, 731–743 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited