OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 7 — Mar. 1, 1999
  • pp: 1191–1195

Simulation of a zero-dispersion filter monochromator for image-spectroscopic measurements

Tetsuo Iwata  »View Author Affiliations

Applied Optics, Vol. 38, Issue 7, pp. 1191-1195 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (106 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



I propose a novel filter monochromator for image spectroscopic measurements. An aberration-corrected double monochromator that I reported on previously [Appl. Opt. 36, 7114–7118 (1997)] is modified for use in a zero-dispersion mode. An incident image on the entrance aperture is focused onto an imaging detector attached on the exit focal plane with a spectral bandwidth determined by the width of the intermediate slit. Unlike a conventional interference filter, the spectral bandwidth and its center wavelength are determined arbitrarily while both a low stray-light level and the sharp cutoff characteristics of the wavelength are maintained. To demonstrate the real capabilities, ray-tracing simulations are carried out. I also discuss the problem of wavelength purity in the spectroscopic image.

© 1999 Optical Society of America

OCIS Codes
(120.4140) Instrumentation, measurement, and metrology : Monochromators
(220.1000) Optical design and fabrication : Aberration compensation

Original Manuscript: September 9, 1998
Revised Manuscript: November 9, 1998
Published: March 1, 1999

Tetsuo Iwata, "Simulation of a zero-dispersion filter monochromator for image-spectroscopic measurements," Appl. Opt. 38, 1191-1195 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Harthcock, S. C. Atkin, “Imaging with functional group maps using infrared microspectroscopy,” Appl. Spectrosc. 42, 449–455 (1988). [CrossRef]
  2. C. J. De Grauw, C. Otto, J. Greve, “Line-scan Raman microspectrometry for biological applications,” Appl. Spectrosc. 51, 1607–1612 (1997). [CrossRef]
  3. A. Garton, D. N. Batchelder, C. Cheng, “Raman microscopy of polymer blends,” Appl. Spectrosc. 47, 922–927 (1993). [CrossRef]
  4. G. J. Puppels, M. Grond, J. Greve, “Direct imaging Raman microscope based on tunable wavelength excitation and narrow-band emission detection,” Appl. Spectrosc. 47, 1256–1267 (1993). [CrossRef]
  5. O. B. Vasilyev, A. Leyva, A. Muhila, M. Valdes, R. Peralta, A. P. Kovalenco, R. M. Welch, T. A. Berendes, V. Y. Isakov, Y. P. Kulikouskiy, S. S. Sokolov, N. N. Strepanov, S. S. Gulidov, W. Von Hoyningen-Huuene, “Spectrometer with wedge interference filters (SWIF): measurement of the spectral optical depths at Mauna Loa Observatory,” Appl. Opt. 34, 4426–4436 (1995). [CrossRef] [PubMed]
  6. P. B. Hays, V. J. Abreu, M. D. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The high-resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993). [CrossRef]
  7. M. Descour, E. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” Appl. Opt. 34, 4817–4826 (1995). [CrossRef] [PubMed]
  8. M. R. Descour, C. E. Volin, E. L. Dereniak, K. J. Thome, A. B. Schumacher, D. W. Wilson, P. D. Maker, “Demonstration of a high-speed nonscanning imaging spectrometer,” Opt. Lett. 22, 1271–1273 (1997). [CrossRef] [PubMed]
  9. T. Okamoto, A. Takahashi, I. Yamaguchi, “Simultaneous acquisition of spectral and spatial intensity distribution,” Appl. Spectrosc. 47, 1198–1202 (1993). [CrossRef]
  10. T. Okamoto, I. Yamaguchi, “Simultaneous acquisition of spectral image information,” Opt. Lett. 16, 1277–1279 (1991). [CrossRef] [PubMed]
  11. E. N. Lewis, A. M. Gorbach, C. Marcott, I. W. Levin, “High-fidelity Fourier transform infrared spectroscopic imaging of primate brain tissue,” Appl. Spectrosc. 50, 263–269 (1996). [CrossRef]
  12. E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67, 3377–3381 (1995). [CrossRef] [PubMed]
  13. E. N. Lewis, I. W. Levin, “Real-time, mid-infrared spectroscopic imaging microscopy using indium antimonide focal-plane array detection,” Appl. Spectrosc. 49, 672–678 (1995). [CrossRef]
  14. K. Itoh, Y. Ohtuka, “Fourier-transform spectral imaging: retrieval of source information from three-dimensional spatial coherence,” J. Opt. Soc. Am. A 3, 94–100 (1986). [CrossRef]
  15. K. Itoh, Y. Ohtuka, “Holographic spectral imaging,” J. Opt. Soc. Am. A 3, 1239–1242 (1986). [CrossRef]
  16. P. J. Treado, I. W. Levin, E. N. Lewis, “High-fidelity Raman imaging spectrometry: a rapid method using an acousto-optic tunable filter,” Appl. Spectrosc. 46, 1211–1216 (1992). [CrossRef]
  17. T. Iwata, H. Hisada, “Proposal for aberration-corrected imaging spectrograph,” Appl. Opt. 36, 7114–7118 (1997). [CrossRef]
  18. D. M. Pallister, A. Govil, M. D. Morris, W. S. Colburn, “Raman imaging system with dual holographic grating tunable filter,” Appl. Spectrosc. 48, 1015–1020 (1994). [CrossRef]
  19. P. A. Jansson, ed., Deconvolution of Images and Spectra (Academic, San Diego, Calif., 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited