OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 7 — Mar. 1, 1999
  • pp: 1231–1236

Multilayer coatings with high reflectance in the extreme-ultraviolet spectral range of 50 to 121.6 nm

Juan I. Larruquert and Ritva A. M. Keski-Kuha  »View Author Affiliations

Applied Optics, Vol. 38, Issue 7, pp. 1231-1236 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (95 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multilayer coatings with three layers were designed to yield an increase in normal-incidence reflectance in the extreme ultraviolet over that of the available single-layer coatings. Multilayer coatings based on Al, MgF2, and either SiC or B4C were demonstrated to have higher reflectance than single layers of SiC and B4C in the spectral region from 57.9 nm to the H Lyman-α line (121.6 nm) and above. The increase in reflectance was higher at wavelengths close to 121.6 nm. Reflectance degraded slightly over time in the same way as for single layers. After a few months, multilayer coatings maintained higher reflectance than their single-layer counterparts.

© 1999 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(230.4170) Optical devices : Multilayers
(260.7200) Physical optics : Ultraviolet, extreme
(260.7210) Physical optics : Ultraviolet, vacuum
(310.1620) Thin films : Interference coatings
(350.6090) Other areas of optics : Space optics

Original Manuscript: June 22, 1998
Revised Manuscript: November 12, 1998
Published: March 1, 1999

Juan I. Larruquert and Ritva A. M. Keski-Kuha, "Multilayer coatings with high reflectance in the extreme-ultraviolet spectral range of 50 to 121.6 nm," Appl. Opt. 38, 1231-1236 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. R. Hunter, J. F. Osantowski, G. Hass, “Reflectance of aluminum overcoated with MgF2 and LiF in the wavelength region from 1600 Å to 300 Å at various angles of incidence,” Appl. Opt. 10, 540–544 (1971). [CrossRef] [PubMed]
  2. W. J. Choyke, W. D. Partlow, E. P. Supertzi, F. J. Venskytis, G. B. Brandt, “Silicon-carbide diffraction grating for the vacuum ultraviolet: feasibility,” Appl. Opt. 16, 2013–2014 (1977). [CrossRef] [PubMed]
  3. R. A. M. Keski-Kuha, J. F. Osantowski, H. Herzig, J. S. Gum, A. R. Toft, “Normal incidence reflectance of ion beam deposited SiC films in the EUV,” Appl. Opt. 27, 2815–2816 (1988). [CrossRef] [PubMed]
  4. J. B. Kortright, D. L. Windt, “Amorphous silicon carbide coatings for extreme ultraviolet optics,” Appl. Opt. 27, 2841–2846 (1988). [CrossRef] [PubMed]
  5. G. M. Blumenstock, R. A. M. Keski-Kuha, “Ion-beam-deposited boron carbide coatings for the extreme ultraviolet,” Appl. Opt. 33, 5962–5963 (1994). [CrossRef] [PubMed]
  6. J. Edelstein, “Reflection/suppression coatings for 900–1200 Å radiation,” in X-Ray/EUV Optics for Astronomy and Microscopy, R. B. Hoover, ed., Proc. SPIE1160, 19–25 (1989). [CrossRef]
  7. J. F. Seely, W. R. Hunter, “Thin film interference optics for imaging the O ii 834-Å airglow,” Appl. Opt. 30, 2788–2794 (1991). [CrossRef] [PubMed]
  8. S. Chakrabarti, J. Edelstein, R. A. M. Keski-Kuha, F. T. Threat, “Reflective coating of 834 Å for imaging O+ ions,” Opt. Eng. 33, 409–413 (1994). [CrossRef]
  9. J. I. Larruquert, R. A. M. Keski-Kuha, “Multilayer coatings for narrowband imaging in the extreme ultraviolet,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VIII, O. H. Siegmund, M. A. Gummin, eds., Proc. SPIE3114, 608–616 (1997). [CrossRef]
  10. M. W. Williams, R. A. MacRae, E. T. Arakawa, “Optical properties of magnesium fluoride in the vacuum ultraviolet,” J. Appl. Phys. 38, 1701–1705 (1967). [CrossRef]
  11. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).
  12. G. M. Blumenstock, R. A. M. Keski-Kuha, M. L. Ginter, “Extreme ultraviolet optical properties of ion-beam-deposited boron carbide thin films,” in X-Ray and Extreme Ultraviolet Optics, R. B. Hoover, A. B. Walker, eds., Proc. SPIE2515, 558–564 (1995). [CrossRef]
  13. L. Marton, J. Toots, “Optical properties of germanium in the far ultraviolet,” Phys. Rev. 160, 602–606 (1967). [CrossRef]
  14. F. E. Girouard, V. V. Truong, “Optical properties of thick white tin films in the VUV,” Appl. Opt. 20, 4144–4145 (1981). [CrossRef] [PubMed]
  15. J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Optical Properties of Metals, , (Fachinformationszentrum Energie Physik Mathematik Karlsruhe, Germany, 1981).
  16. C. J. Powell, “Analysis of optical- and inelastic-electron-scattering data. III. Reflectivity data for beryllium, germanium, antimony, and bismuth,” J. Opt. Soc. Am. 60, 214–220 (1970). [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1991), Vol. 2.
  18. J. F. Osantowski, “Reflectance and optical constants for Cer-Vit from 250 to 1050 Å,” J. Opt. Soc. Am. 64, 834–838 (1974). [CrossRef]
  19. D. Schwarcz, R. A. M. Keski-Kuha, “Dual ion beam sputtering of carbides for EUV reflectance,” Proc. Mater. Res. Soc. Symp. 396, 503–508 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited