OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 8 — Mar. 10, 1999
  • pp: 1287–1294

Angular-Scattering Characteristics of Ferroelectric Liquid-Crystal Electro-Optical Devices Operating in the Transient-Scattering and the Extended-Scattering Modes

Kenneth L. Marshall, Joshua Haddock, Nathan Bickel, Dianne Singel, and Stephen D. Jacobs  »View Author Affiliations

Applied Optics, Vol. 38, Issue 8, pp. 1287-1294 (1999)

View Full Text Article

Acrobat PDF (195 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The angular distribution of forward-scattered light in transient-scattering-mode (TSM) and extended-scattering-mode (ESM) ferroelectric liquid-crystal (FLC) devices was evaluated by use of circularly polarized incident light. For both modes the intensity and the distribution of forward-scattered light depended primarily on the FLC birefringence, spontaneous polarization, and the cell path length. In the FLC materials examined, the forward-scattering intensity under ESM drive conditions increased with longer FLC pitch lengths, whereas under TSM conditions stronger forward scattering was observed with increasing FLC spontaneous polarization. Although both TSM and ESM drive conditions displayed a similar angular distribution for forward-scattered light, the intensity of ESM scattering over a 0°–6° range was considerably smaller than that observed in earlier experiments with linearly polarized incident light.

© 1999 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(160.2100) Materials : Electro-optical materials
(160.2260) Materials : Ferroelectrics
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(230.4110) Optical devices : Modulators
(260.3060) Physical optics : Infrared
(290.5820) Scattering : Scattering measurements

Kenneth L. Marshall, Joshua Haddock, Nathan Bickel, Dianne Singel, and Stephen D. Jacobs, "Angular-Scattering Characteristics of Ferroelectric Liquid-Crystal Electro-Optical Devices Operating in the Transient-Scattering and the Extended-Scattering Modes," Appl. Opt. 38, 1287-1294 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. Gunning, J. Pasko, and J. Tracy, “A liquid crystal tunable spectral filter: visible and infrared operation,” in Imaging Spectroscopy I, D. D. Norris, ed., Proc. SPIE 268, 190–194 (1981).
  2. P. Joffre, G. Illiaquer, and J. P. Huignard, “Electro-optic properties of nematic liquid crystals for phase modulation in the infrared 10.6 μm,” in Electro-Optic and Magneto-Optic Materials and Applications, J. P. Castera, ed., Proc. SPIE 1126, 13–20 (1989).
  3. S.-T. Wu and R. J. Cox, “Potential infrared liquid crystals,” Liq. Cryst. 5, 1415 (1989).
  4. S.-T. Wu, “Infrared properties of nematic liquid crystals: an overview,” Opt. Eng. 26, 120–128 (1987).
  5. Y. Shi, “Liquid crystal infrared optics and applications,” in International Conference on Optoelectronic Science and Engineering ’90, D.-H. Wang, ed., Proc. SPIE 1230, 58–60 (1990).
  6. V. A. Berenberg, V. V. Danilov, Yu. A. Reznikov, A. I. Sidorov, and M. G. Tomilin, “Liquid crystals in laser optics,” Sov. J. Opt. Technol. 60, 487–500 (1993).
  7. S.-T. Wu, U. Finkenzeller, and V. Reiffenrath, “Physical properties of diphenyldiacetylenic liquid crystals,” J. Appl. Phys. 65, 4372–4381 (1989).
  8. R. E. Flannery and J. E. Miller, “Status of uncooled infrared imagers,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing III, G. C. Holst, ed., Proc. SPIE 1689, 379–395 (1992).
  9. V. V. Danilov, O. B. Danilov, L. D. Zhukovskaya, A. A. Mak, I. E. Morichev, E. A. Morozovna, V. S. Mylnikov, and D. A. Savel’ev, “Liquid crystal modulator operating at 10.6 μm,” Sov. J. Quantum Electron. 15, 1111–1114 (1985).
  10. J. G. Pasko, J. Tracy and W. Elser, “Liquid crystal infrared modulation,” in Active Optical Devices, J. Tracy ed., SPIE 202, 82–89 (1979).
  11. I. C. Khoo, “Analysis of liquid crystal IR chopper,” Final Rep. TCN 87–569, (U.S. Army Research Office, Research Triangle Park, N.C., 20 March 1988).
  12. J. W. McCargar, R. Ondris-Crawford, and J. L. West, “Polymer dispersed liquid crystal infrared light shutter,” J. Electron. Imaging 1, 22–28 (1992).
  13. K. Yoshino and M. Ozaki, “New electro-optic effect of microsecond response utilizing transient light scattering in ferroelectric liquid crystal,” Jpn. J. Appl. Phys. 23, L385–L387 (1984).
  14. M. Ozaki and K. Yoshino, “Characteristics of high-speed electro-optic device using ferroelectric liquid crystal and effect of space charge,” Technol. Rep. Osaka Univ. 35, 53–60 (1985).
  15. K. Yoshino, M. Ozaki, T. Sakurai, and M. Honma, “Dependence of switching and memory times of optical switching elements utilizing ferroelectric liquid crystals on thickness of cell and material,” Jpn. J. Appl. Phys. 24, 59–62 (1985).
  16. K. Yoshino and M. Ozaki, “Characteristics of transient scattering in ferroelectric liquid crystals as functions of molecular structure, cell thickness and temperature and their applications,” Jpn. J. Appl. Phys. 24, 130–133 (1985).
  17. M. Ozaki, S. Kishio, and K. Yoshino, “Characteristics of transient light scattering in ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 146, 251–264 (1987).
  18. K. Yoshino, M. Ozaki, and S. Kishio, “Characteristics of the electro-optic effect of ferroelectric liquid crystals in the infrared range,” Jpn. J. Appl. Phys. 24, 45–48 (1985).
  19. K. L. Marshall, S. D. Jacobs, and J. E. Miller, “Midinfrared modulation through the use of field-induced scattering in ferroelectric liquid crystals,” Appl. Opt. 34, 6704–6713 (1995).
  20. I.-C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993), Vol. 1, p. 108.
  21. A. Tagawa, T. Hatai, K. Nakao, M. Ozaki, and K. Yoshinio, “Angular dependence of transient light scattering in ferroelectric liquid crystal,” Jpn. J. Appl. Phys. 28 Suppl. 2, 133–135 (1989).
  22. J. Kobayashi, J. Kita, H. Moritake, and K. Yoshino, “Advances in development IR modulators of ferroelectric liquid crystal utilizing transient light scattering effect,” Mol. Cryst. Liq. Cryst. 263, 595–605 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited