OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 8 — Mar. 10, 1999
  • pp: 1357–1363

Dynamic hologram recording characteristics in DuPont photopolymers

Raymond K. Kostuk  »View Author Affiliations


Applied Optics, Vol. 38, Issue 8, pp. 1357-1363 (1999)
http://dx.doi.org/10.1364/AO.38.001357


View Full Text Article

Enhanced HTML    Acrobat PDF (126 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hologram formation and diffusion reactions in photopolymer films are examined at different stages of exposure and at different spatial frequencies. Different properties of the grating formation process are evaluated from efficiency data, including the relative rates of diffusion and photoinitiated polymerization, dye absorption, and residual efficiency enhancement after UV curing. It was also found that gratings with larger periods (∼1.4 µm) are susceptible to erasure effects with postexposure laser illumination. In addition, crossed gratings were found to have an extended dynamic range. This effect can have a significant impact on the number of holograms formed with rotational or peristrophic multiplexing.

© 1999 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(090.2900) Holography : Optical storage materials
(090.4220) Holography : Multiplex holography
(160.5470) Materials : Polymers

History
Original Manuscript: June 29, 1998
Revised Manuscript: November 19, 1998
Published: March 10, 1999

Citation
Raymond K. Kostuk, "Dynamic hologram recording characteristics in DuPont photopolymers," Appl. Opt. 38, 1357-1363 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-8-1357


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. J. Gambogi, W. A. Gerstadt, S. R. Mackara, A. M. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991). [CrossRef]
  2. W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1993). [CrossRef]
  3. S. A. Zager, A. M. Weber, “Display holograms in DuPont’s OmniDex films,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 58–67 (1991).
  4. K. Curtis, D. Psaltis, “Characterization of the DuPont photopolymer for three-dimensional holographic storage,” Appl. Opt. 33, 5396–5399 (1994). [CrossRef] [PubMed]
  5. K. Curtis, D. Psaltis, “Recording of multiple holograms in photopolymer films,” Appl. Opt. 31, 7425–7428 (1992). [CrossRef] [PubMed]
  6. A. Pu, K. Curtis, D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996). [CrossRef]
  7. D. A. Waldman, H.-Y. S. Li, “Determination of low transverse shrinkage in slant fringe gratings of cationic ring-opening volume hologram recording material,” in Diffractive and Holographic Device Technologies and Applications IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE3010, 354–372 (1997). [CrossRef]
  8. D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Tech. 41, 497–514 (1997).
  9. C. Carre, D. J. Lougnot, “Photopolymers for holographic recording: from standard to self-processing materials,” J. Phys. (Paris) III, 3, 1445–1460 (1993).
  10. J.-P. Fouassier, F. Morlet-Savary, “Photopolymers for laser imaging and holographic recording: design and reactivity of photosensitizers,” Opt. Eng. 35, 304–312 (1996). [CrossRef]
  11. D. J. Lougnot, C. Turk, “Photopolymers for holographic recording: II. Self-developing materials for real-time interferometry,” Pure Appl. Opt. 1, 251–268 (1992). [CrossRef]
  12. D. J. Lougnot, C. Turck, “Photopolymers for holographic recording: III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992). [CrossRef]
  13. D. J. Lougnot, N. Noiret, C. Turck, “Photopolymers for holographic recording: IV. New self-processing formulations based on B-hydroxy ethyloxazolidone acrylate,” Pure Appl. Opt. 2, 383–392 (1993). [CrossRef]
  14. Y. Defosse, C. Carre, D. J. Lougnot, “Use of a self-developing polymer material for volume reflection hologram recording,” Pure Appl. Opt. 2, 437–440 (1993). [CrossRef]
  15. N. Noiret, C. Meyer, D. J. Lougnot, “Photopolymers for holographic recording: V. Self-processing systems with near infrared sensitivity,” Pure Appl. Opt. 3, 55–71 (1994). [CrossRef]
  16. W. S. Colburn, K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636–1641 (1971). [CrossRef] [PubMed]
  17. B. L. Booth, “Photopolymer material for holography,” Appl. Opt. 14, 593–601 (1975). [CrossRef] [PubMed]
  18. K. Curtis, A. Pu, D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993–994 (1994). [CrossRef] [PubMed]
  19. U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993). [CrossRef]
  20. U.-S. Rhee, H. J. Caulfield, C. S. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995). [CrossRef] [PubMed]
  21. G. Zhao, P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994). [CrossRef]
  22. V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997). [CrossRef]
  23. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  24. A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in DuPont’s new photopolymer materials,” in Practical Holography IV, S. A. Benton, ed., Proc. SPIE1212, 30–39 (1990). [CrossRef]
  25. J. J. Couture, R. A. Lessard, “Effective thickness determination for volume transmission multiplex holograms,” Can. J. Phys. 64, 553–557 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited