OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 9 — Mar. 20, 1999
  • pp: 1423–1433

Radiative, collisional, and predissociative effects in CH laser-induced-fluorescence flame thermometry

Jorge Luque and David R. Crosley  »View Author Affiliations


Applied Optics, Vol. 38, Issue 9, pp. 1423-1433 (1999)
http://dx.doi.org/10.1364/AO.38.001423


View Full Text Article

Enhanced HTML    Acrobat PDF (297 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced fluorescence of the CH radical is used to determine the flame-front temperature of an 8-Torr premixed CH4/O2 flame. The A2Δ–X2Π (0, 0) and B2Σ- - X2Π (0, 0) bands give values of 1960 ± 60 and 1920 ± 70 K, respectively. This is an improvement over a previous study that found discrepancies up to 20% between these bands. New rotational-level-dependent transition probabilities are the main reason for this improvement. The weaker off-diagonal bands AX (0, 1) and BX (0, 1) yield temperatures of 1930 ± 90 and 1830 ± 100 K, respectively. The influence of rotational transfer on the predissociated levels that have N′ > 14 in B2Σ-, v′ = 0 was investigated with fluorescence scans and a statistical power-gap law model of the relaxation; deviations up to 8% in temperature can occur because of this process.

© 1999 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(300.2530) Spectroscopy : Fluorescence, laser-induced

History
Original Manuscript: June 8, 1998
Revised Manuscript: August 28, 1998
Published: March 20, 1999

Citation
Jorge Luque and David R. Crosley, "Radiative, collisional, and predissociative effects in CH laser-induced-fluorescence flame thermometry," Appl. Opt. 38, 1423-1433 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-9-1423


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Cambridge, Mass., 1996).
  2. K. J. Rensberger, J. B. Jeffries, R. A. Copeland, K. Kohse-Höinghaus, M. L. Wise, D. R. Crosley, “Laser-induced fluorescence determination of temperatures in low pressure flames,” Appl. Opt. 28, 3556–3566 (1989). [CrossRef] [PubMed]
  3. E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B. 64, 689–697 (1997). [CrossRef]
  4. J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A–X system,” J. Chem. Phys. 104, 2146–2155 (1996). [CrossRef]
  5. J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. II. B–X system,” J. Chem. Phys. 104, 3907–3913 (1996). [CrossRef]
  6. J. Luque, D. R. Crosley, “Absolute CH concentration in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996). [CrossRef]
  7. J. Luque, G. P. Smith, D. R. Crosley, “Quantitative CH determinations in low-pressure flames,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 959–966. [CrossRef]
  8. K. J. Rensberger, M. J. Dyer, R. A. Copeland, “Time-resolved CH A and B laser-induced fluorescence in low pressure hydrocarbon flames,” Appl. Opt. 27, 3679–3689 (1988). [CrossRef] [PubMed]
  9. J. Luque, J. Ruiz, M. Martin, “Rotationally resolved rate constant measurements for removal of CH A and B by ketene,” Laser Chem. 14, 207–216 (1994). [CrossRef]
  10. N. L. Garland, D. R. Crosley, “Relative transition probability measurements in the A–X and B–X bands of CH,” J. Quant. Spectrosc. Radiat. Transfer 33, 591–595 (1984). [CrossRef]
  11. E. W. van Dishoeck, “Photodissociation processes in the CH molecule,” J. Chem. Phys. 86, 196–214 (1987). [CrossRef]
  12. J. Hinze, G. C. Lie, “Valence excited states of CH. III. Radiative lifetimes,” Astrophys. J. 196, 621–631 (1975). [CrossRef]
  13. D. R. Crosley, R. K. Lengel, “Relative transition probabilities and the electronic transition moment in the A–X system of OH,” J. Quant. Spectrosc. Radiat. Transfer 15, 579–591 (1975). [CrossRef]
  14. M. Zachwieja, “New investigations of the A–X band system in the CH radical and a new reduction of the vibration-rotation spectrum of CH from the ATMOS spectra,” J. Molec. Spectrosc. 170, 285–309 (1995). [CrossRef]
  15. N. L. Garland, D. R. Crosley, “Energy transfer processes in CH A and B in an atmospheric pressure flame,” Appl. Opt. 24, 4229–4237 (1985). [CrossRef]
  16. J. Luque, D. R. Crosley, “LIFBASE: database and spectral simulation program (Version 1.2),” (SRI International, Menlo Park, Calif., 1998).
  17. LUQUE@MPLVAX.SRI.COM; DRC@MPLVAX.SRI.COM; http://www.sri.com/cem/lifbase .
  18. M. D. Rumminger, R. W. Dibble, N. H. Heberle, D. R. Crosley, “Gas temperature above a porous radiant burner: comparison of measurements and model predictions,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1755–1762. [CrossRef]
  19. R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-induced fluorescence of the CH molecule in a low-pressure flame,” J. Quant. Spectrosc. Radiat. Transfer 32, 363–370 (1984). [CrossRef]
  20. R. G. Joklik, J. W. Daily, “LIF study of CH A collision dynamics in a low pressure oxyacetylene flame,” Combust. Flame 69, 211–219 (1987). [CrossRef]
  21. K. Kohse-Höinghaus, W. Perc, T. Just, “Laser-induced saturated fluorescence as a method for the determination of radical concentrations in flames,” Ber. Bunsenges. Phys. Chem. 87, 1052–1057 (1983). [CrossRef]
  22. K. Kohse-Höinghaus, R. Heidenreich, T. Just, “Determination of absolute OH and CH concentrations in a low pressure flame by laser-induced saturated fluorescence,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1177–1185.
  23. W. Brennen, T. Carrington, “Chemiluminescence of CH in the O + C2H2 reaction: rotational relaxation and quenching,” J. Chem. Phys. 46, 7–18 (1967). [CrossRef]
  24. J. L. Cooper, J. C. Whitehead, “Rotational and vibrational energy transfer in CH A,” J. Chem. Soc. Faraday Trans. 89, 1287–1290 (1993). [CrossRef]
  25. C. C. Wang, T. L. Chin, K. C. Lin, “Rotational energy transfer of CH in the B (v = 0) state by collisions with Ar and N2O using a time-resolved Fourier transform spectrometer,” J. Chem. Phys. 107, 10348–10349 (1997). [CrossRef]
  26. J. L. Cooper, J. C. Whitehead, “Rotational and vibrational energy transfer in CH B,” J. Phys. Chem. 98, 8274–8278 (1994). [CrossRef]
  27. R. N. Dixon, D. P. Newton, H. Rieley, “Collisionally induced rotational energy transfer within the A state of CH,” J. Chem. Soc. Faraday Trans. 2 83, 675–682 (1987). [CrossRef]
  28. R. Kienle, A. Jorg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH Av′ = 1,” Appl. Phys. B 56, 249–258 (1993). [CrossRef]
  29. R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH A in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).
  30. T. Nielsen, F. Borman, M. Burrows, P. Andresen, “Picosecond laser-induced fluorescence measurement of rotational energy transfer of OH A2Σ+ (v′ = 2) in atmospheric pressure flames,” Appl. Opt. 36, 7960–7969 (1997). [CrossRef]
  31. J. I. Steinfeld, P. Ruttengberg, G. Millot, G. Fanjoux, B. Lavorel, “Scaling laws for inelastic collision processes in diatomic molecules,” J. Phys. Chem. 95, 9638–9647 (1991). [CrossRef]
  32. W. Q. Qingyu, M. Yang, Y. Li, “Rotational energy transfer within NO A by optical–optical, double-resonance multiphoton ionization spectroscopy,” J. Electrochem. Soc. 137, 3099–3103 (1990). [CrossRef]
  33. J. Luque, D. R. Crosley, “Predissociation rates in the B state of CH,” Chem. Phys. 206, 185–192 (1996). [CrossRef]
  34. N. Elander, M. Hehenberger, P. R. Bunker, “Theoretical studies related to time resolved spectroscopy: the iterative Rydberg–Klein–Dunham method and Weyl theory applied to the predissociations in the B state of CH,” Phys. Scr. 20, 631–646 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited