OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 9 — Mar. 20, 1999
  • pp: 1434–1443

Quantification of NO AX(0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames

Christof Schulz, Volker Sick, Ulrich E. Meier, Johannes Heinze, and Winfried Stricker  »View Author Affiliations


Applied Optics, Vol. 38, Issue 9, pp. 1434-1443 (1999)
http://dx.doi.org/10.1364/AO.38.001434


View Full Text Article

Enhanced HTML    Acrobat PDF (241 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced-fluorescence techniques have been used successfully for quantitative two-dimensional measurements of nitric oxide. NO AX(0, 2) excitation at 248 nm recently found applications in internal-combustion engines. We assess the collisional processes that influence quantification of signal intensities in terms of saturation, rotational energy transfer, and line broadening, using laminar high-pressure methane/air and n-heptane/air flames at pressures as high as 80 bars (8 × 106 Pa). A calibration method that is applicable in technical combustion systems based on addition of NO to the burning flame is investigated for various air/fuel ratios and pressures and yields information about the influence of NO reburn processes.

© 1999 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.2530) Spectroscopy : Fluorescence, laser-induced

History
Original Manuscript: July 6, 1998
Revised Manuscript: December 22, 1998
Published: March 20, 1999

Citation
Christof Schulz, Volker Sick, Ulrich E. Meier, Johannes Heinze, and Winfried Stricker, "Quantification of NO A–X(0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames," Appl. Opt. 38, 1434-1443 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-9-1434


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Wodtke, L. Huwel, H. Schlüter, G. Meijer, P. Andresen, H. Voges, “High sensitivity detection of NO in a flame using a tunable ArF excimer laser,” Opt. Lett. 13, 910–912 (1988). [CrossRef] [PubMed]
  2. A. O. Vyrodov, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995). [CrossRef]
  3. C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced fluorescence detection of nitric oxide in high-pressure flames with A–X(0, 2) excitation,” Appl. Opt. 36, 3227–3232 (1997). [CrossRef] [PubMed]
  4. F. Hildenbrand, C. Schulz, V. Sick, E. Wagner, “Investigation of spatially resolved light absorption in an SI engine,” Appl. Opt. 38, 1452–1458 (1999). [CrossRef]
  5. J. E. Dec, R. E. Canaan, “PLIF imaging of NO formation in a DI Diesel engine,” in 1998 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1998), paper 980147.
  6. C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for measuring nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995). [CrossRef]
  7. C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2597–2604.
  8. F. Hildenbrand, C. Schulz, V. Sick, G. Josefsson, I. Magnusson, Ö. Andersson, M. Aldén, “Laserspectroscopic investigation of flow fields and NO-formation in a realistic SI engine,” in 1998 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1998), paper 980148.
  9. M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, P. Andresen, “Quantitative in-cylinder NO LIF measurements with a KrF excimer laser applied to a mass-production SI engine fueled with isooctane and regular gasoline,” in 1997 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1997), paper 970824.
  10. C. Schulz, J. Wolfrum, V. Sick, “Comparative study of experimental and numerical NO profiles in SI combustion,” in Proceedings of the Twenty-Seventh International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 2077–2084.
  11. P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993). [CrossRef]
  12. P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser-induced fluorescence measurements of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994). [CrossRef]
  13. P. H. Paul, “Calculation of transition frequencies and rotational line strengths in the γ-bands of nitric oxide,” J. Quant. Radiat. Transfer 57, 581–589 (1997). [CrossRef]
  14. M. D. DiRosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0, 0) absorption lines by O2, H2O and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994). [CrossRef]
  15. M. D. DiRosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994). [CrossRef]
  16. G. Josefsson, I. Magnusson, F. Hildenbrand, C. Schulz, V. Sick, “Multidimensional laser diagnostic and numerical analysis of NO formation in a gasoline engine,” in Proceedings of the Twenty-Seventh International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 2085–2092.
  17. E. W. Rothe, Y. Gu, A. Chryssostomou, P. Andresen, F. Bormann, “Effect of laser intensity and of lower-state rotational energy transfer upon temperature measurements made with laser-induced predissociative fluorescence,” Appl. Phys. B 66, 251–258 (1998). [CrossRef]
  18. A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature and Species (Gordon & Breach, Amsterdam, 1996).
  19. G. Zizak, J. A. Lanauze, J. D. Winefordner, “An experimental study of the excited state rotational population of OH in flames using laser induced fluorescence,” Combust. Flame 65, 203–214 (1986). [CrossRef]
  20. J. T. Salmon, N. M. Laurendeau, “Calibration of laser-saturated fluorescence measurements using Rayleigh scattering,” Appl. Opt. 24, 65–73 (1985). [CrossRef] [PubMed]
  21. J. Luque, G. P. Smith, D. Crosley, “Quantitative CH determinations in low-pressure flames,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 959–966.
  22. B. A. Williams, J. W. Fleming, “Comparative species concentrations in CH4/O2/Ar flames doped with N2O, NO and NO2,” Combust. Flame 98, 93–106 (1994). [CrossRef]
  23. J. Warnatz, U. Maas, R. Dibble, Combustion (Springer-Verlag, Berlin, 1996). [CrossRef]
  24. H. Eberius, T. Just, T. Kick, G. Häfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” presented at the Joint Meeting of the German–Italian Section of the Combustion Institute, Ravello, Italy, 11–14 September 1989.
  25. M. Decker, V. Sick, J. Heinze, W. Stricker, “2D-temperature measurements in high pressure flames using LIF of molecular oxygen,” in Conference on Lasers and Electro-Optics (CLEO ’96), Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 50–51.
  26. A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A–X (0, 0) system of NO by N2, Ar, and He at elevated pressures measured by laser induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).
  27. M. Woyde, W. Stricker, “The application of CARS for temperature measurements in high pressure combustion systems,” Appl. Phys. B 50, 519–525 (1990). [CrossRef]
  28. R. J. Jensen, R. D. Guettler, J. L. Lyman, “The ultraviolet absorption spectrum of hot carbon dioxide,” Chem. Phys. Lett. 277, 356–360 (1997). [CrossRef]
  29. F. Fernandez-Allonso, G. A. Raiche, D. R. Crosley, “Rotational energy transfer in A2Σ+ NO in atmospheric flames and flow cells,” presented at the Spring Meeting of the Western States Section of the Combustion Institute, paper 94-047 (Sandia National Laboratories, Livermore, Calif. 94551, 1994).
  30. C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative and O2 Schumann–Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 9–24 (1992). [CrossRef]
  31. D. D. Thomsen, F. F. Kuligowski, N. M. Laurendeau, “Background corrections for laser-induced-fluorescence measurements of nitric oxide in lean, high-pressure, premixed methane flames,” Appl. Opt. 36, 3244–3252 (1997). [CrossRef] [PubMed]
  32. R. J. Cattolica, J. A. Cavalowsky, T. G. Mataga, “Laser-fluorescence measurements of nitric oxide in low-pressure H2/O2/NO flames,” in Proceedings of the Twenty-Second International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1988), pp. 1156–1173.
  33. J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurement and modeling of nitric oxide in high-pressure C2H4/O2/N2 flames,” Combust. Flame 101, 141–152 (1995). [CrossRef]
  34. C. Schulz, “Entwicklung und Anwendung einesLaser-induzierten-Fluoreszenzverfahrens zur quantitativen Bestimmung momentaner Stickoxidverteilungen in Verbrennungsmotoren,” Ph.D. dissertation (University of Heidelberg, Heidelberg, Germany, 1997).
  35. A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature in a transparent SI engine,” in 1995 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1995), paper 952462.
  36. D. Schmidt, Institut für Technische Verbrennung, University of Stuttgart, Stuttgart, Germany (personal communication, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited