OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 9 — Mar. 20, 1999
  • pp: 1444–1451

Cavity ringdown and laser-induced incandescence measurements of soot

Randy L. Vander Wal and Thomas M. Ticich  »View Author Affiliations

Applied Optics, Vol. 38, Issue 9, pp. 1444-1451 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Currently laser-induced incandescence (LII) is widely used for the measurement of soot volume fraction. A particularly important aspect of the technique that has received less attention, however, is calibration. The applicability of cavity ringdown (CRD) for measurement of soot volume fraction f v is assessed, and the calibration of LII by means of CRD is demonstrated. The accuracy of CRD for f v determination is validated by comparison with traditional light extinction and path-integrated LII. By use of CRD, the quantification of LII for parts in 109 (ppb) f v levels is demonstrated. Results are presented that demonstrate the accuracy of CRD for a single laser pulse to be better than ±5% for measurement of ppb soot volume-fraction levels over a 1-cm path length. By use of CRD, spatially resolved LII signals from soot within methane–air diffusion flames are calibrated for ppb f v levels, thereby avoiding the extrapolation required of less sensitive methods in current use.

© 1999 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.1030) Spectroscopy : Absorption

Original Manuscript: March 24, 1998
Revised Manuscript: October 15, 1998
Published: March 20, 1999

Randy L. Vander Wal and Thomas M. Ticich, "Cavity ringdown and laser-induced incandescence measurements of soot," Appl. Opt. 38, 1444-1451 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994). [CrossRef]
  2. J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed flat flames,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2396. [CrossRef]
  3. B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994). [CrossRef]
  4. C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994). [CrossRef]
  5. F. Cignoli, S. Benecchi, G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994). [CrossRef] [PubMed]
  6. N. A. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993). [CrossRef]
  7. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995). [CrossRef] [PubMed]
  8. R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996). [CrossRef]
  9. R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996). [CrossRef] [PubMed]
  10. C. R. Shaddix, K. C. Smith, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996). [CrossRef]
  11. R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1606 (1997). [CrossRef]
  12. S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284. [CrossRef]
  13. C. J. Dasch, “Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984). [CrossRef] [PubMed]
  14. B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–730 (1997). [CrossRef] [PubMed]
  15. L. A. Melton, “Soot diagnostics based on laser-heating,” Appl. Opt. 23, 2201–2208 (1984). [CrossRef]
  16. D. L. Hofeldt, “Real time soot concentration measurement technique for engine exhaust streams,” SAE Tech. Paper 930079 (Society of Automotive Engineers, Warrensdale, Pa., 1993).
  17. C. M. Megaridis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989). [CrossRef]
  18. U. O. Koylu, G. M. Faeth, T. L. Farias, M. G. Varvalho, “Fractal and projected properties of soot aggregates,” Combust. Flame 100, 621–633 (1995). [CrossRef]
  19. R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size be measured by laser-induced incandescence?” Combust. Flame 116, 291–296 (1999). [CrossRef]
  20. P. Zalickik, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, C. H. Kruger, “Methyl radical measurements by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995). [CrossRef]
  21. R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995). [CrossRef]
  22. J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997). [CrossRef] [PubMed]
  23. J. J. Scherer, D. J. Rakestraw, “Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,” Chem. Phys. Lett. 265, 169–176 (1997). [CrossRef]
  24. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  25. G. M. Faeth, U. O. Koylu, “Soot morphology and optical properties in nonpremixed turbulent flame environments,” Combust. Sci. Technol. 108, 207–229 (1995). [CrossRef]
  26. M. Y. Choi, A. Hamins, G. W. Mulholland, T. Kashiwagi, “Comparisons of the soot volume fraction using gravimetric and light extinction techniques,” Combust. Flame 102, 161–169 (1995). [CrossRef]
  27. R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in a diffusion flame,” Combust. Flame 51, 203–218 (1983). [CrossRef]
  28. T. T. Charalampopolous, “Morphology and dynamics of agglomerated particles in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992). [CrossRef]
  29. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  30. G. Prado, A. Garo, A. Ko, A. Sarofim, “Polycyclic aromatic hydrocarbon formation and destruction in a laminar diffusion flame,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 989–996.
  31. R. A. Dobbins, R. A. Fletcher, W. Lu, “Laser-microprobe analysis of soot precursor particles and carbonaceous soot,” Combust. Flame 100, 301–310 (1995). [CrossRef]
  32. R. L. Vander Wal, “Onset of carbonization: spatial location via simultaneous LIF-LII and characterization via TEM,” Combust. Sci. Technol. 118, 343–360 (1996). [CrossRef]
  33. K. C. Smyth, C. R. Shaddix, “The elusive history of m = 1.57–0.56I for the refractive index of soot,” Combust. Flame 107, 314–320 (1996). [CrossRef]
  34. J. G. Taylor, An Introduction to Error Analysis (University Science, Mill Valley, Calif., 1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited