OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 9 — Mar. 20, 1999
  • pp: 1467–1475

Spontaneous anti-Stokes Raman probe for gas temperature measurements in industrial furnaces

George Zikratov, Fang-Yu Yueh, Jagdish P. Singh, O. Perry Norton, R. Arun Kumar, and Robert L. Cook  »View Author Affiliations


Applied Optics, Vol. 38, Issue 9, pp. 1467-1475 (1999)
http://dx.doi.org/10.1364/AO.38.001467


View Full Text Article

Enhanced HTML    Acrobat PDF (221 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact, pulsed Nd:YAG laser-based instrument has been built to measure in situ absolute gas temperatures in large industrial furnaces by use of spontaneous anti-Stokes Raman scattering. The backscattering configuration was used to simplify the optics alignment and increase signal-to-noise ratios. Gated signal detection significantly reduced the background emission that is found in combustion environments. The anti-Stokes instead of the Stokes component was used to eliminate contributions to spectra from cold atmospheric nitrogen. The system was evaluated in a methane/air flame and in a bench-top oven, and the technique was found to be a reliable tool for nonintrusive absolute temperature measurements with relatively clean gas streams. A water-cooled insertion probe was integrated with the Raman system for measurement of the temperature profiles inside an industrial furnace. Gas temperatures near 1500–1800 K at atmospheric pressure in an industrial furnace were inferred by fitting calculated profiles to experimental spectra with a standard deviation of less than 1% for averaging times of ∼200 s. The temperatures inferred from Raman spectra are in good agreement with data recorded with a thermocouple probe.

© 1999 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(120.6780) Instrumentation, measurement, and metrology : Temperature
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.6330) Spectroscopy : Spectroscopy, inelastic scattering including Raman
(300.6450) Spectroscopy : Spectroscopy, Raman

History
Original Manuscript: June 12, 1998
Revised Manuscript: December 21, 1998
Published: March 20, 1999

Citation
George Zikratov, Fang-Yu Yueh, Jagdish P. Singh, O. Perry Norton, R. Arun Kumar, and Robert L. Cook, "Spontaneous anti-Stokes Raman probe for gas temperature measurements in industrial furnaces," Appl. Opt. 38, 1467-1475 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-9-1467

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited