OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 9 — Mar. 20, 1999
  • pp: 1488–1493

Surface profiling of lithium with a laser-desorption mass-spectrometer microprobe

Grant A. Bickel and Harry M. Adams  »View Author Affiliations

Applied Optics, Vol. 38, Issue 9, pp. 1488-1493 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (1130 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A laser-desorption mass-spectrometer microprobe has been developed to profile Li distributions on the crevice surfaces of Cr-plated rolled-joint hubs. A single laser pulse is used to desorb and ionize the surface species followed by detection of Li+ in a time-of-flight mass spectrometer. Images of the surface Li distribution are obtained with a resolution of <10 µm. These images are directly compared with Li images from the more conventional secondary ion mass spectrometry technique and evaluated with respect to surface topographical features measured by secondary electron microscopy and atomic force microscopy. The laser-desorption images are shown to provide the same qualitative information as that available from secondary ion mass spectrometry.

© 1999 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(260.5210) Physical optics : Photoionization

Original Manuscript: June 22, 1998
Revised Manuscript: September 18, 1998
Published: March 20, 1999

Grant A. Bickel and Harry M. Adams, "Surface profiling of lithium with a laser-desorption mass-spectrometer microprobe," Appl. Opt. 38, 1488-1493 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. R. Savina, K. R. Lykke, “Microscopic chemical imaging with laser desorption mass spectrometry,” Anal. Chem. 69, 3741–3746 (1997). [CrossRef]
  2. J. M. Behm, J. C. Hemminger, K. R. Lykke, “Microscopic laser desorption/postionization Fourier transform mass spectrometry,” Anal. Chem. 68, 713–719 (1996). [CrossRef] [PubMed]
  3. R. Zenobi, Q. Zhan, P. Voumard, “Multiphoton ionization spectroscopy in surface analysis and laser desorption mass spectrometry,” Mikrochim. Acta 124, 273–281 (1996). [CrossRef]
  4. M. S. de Vries, D. J. Elloway, H. R. Wendt, H. E. Hunziker, “Photoionization mass spectrometer with a microscope laser desorption source,” Rev. Sci. Instrum. 63, 3321–3325 (1992). [CrossRef]
  5. R. M. Caprioli, T. B. Farmer, J. Gile, “Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS,” Anal. Chem. 69, 4751–4760 (1997). [CrossRef] [PubMed]
  6. D. Romero, J. J. Laserna, “Multielemental chemical imaging using laser-induced breakdown spectrometry,” Anal. Chem. 69, 2871–2876 (1997). [CrossRef] [PubMed]
  7. N. Winograd, “Ion beams and laser postionization for molecule-specific imaging,” Anal. Chem. 65, 622A–629A (1993). [CrossRef] [PubMed]
  8. J. E. Anderson, T. M. Allen, A. W. Garrett, C. G. Gill, P. H. Hemberger, P. B. Kelly, N. S. Nogar, “Resonant laser ablation: mechanisms and applications,” in Resonance Ionization Spectroscopy 1996, Vol. 388 of AIP Conference Proceedings Series (American Institute of Physics, New York, 1997), pp. 195–198.
  9. V. F. Urbanic, G. M. McDougall, A. J. White, A. A. Bahurmuz, “Deuterium ingress at rolled joints in CANDU reactors,” in Proceedings of an International Conference on Expanded and Rolled Joint Technology, E. G. Price, ed. (Canadian Nuclear Society, Toronto, 1993), pp. G18–G45.
  10. Software provided by D. A. Dahl, J. E. Delmore, Idaho National Engineering Laboratory, EG&G Idaho, Inc.
  11. J. F. Ready, Effects of High Power Laser Radiation (Academic, New York, 1971).
  12. M. Von Allmen, Laser Beam Interactions With Materials: Physical Principles and Applications (Springer-Verlag, Berlin, 1987). [CrossRef]
  13. J. L. Brand, S. M. George, “Effects of laser pulse characteristics and thermal desorption parameters on laser induced thermal desorption,” Surf. Sci. 167, 341–362 (1986). [CrossRef]
  14. J.-M. Philippoz, R. Zenobi, R. N. Zare, “Pulsed heating of surfaces: comparison between numerical simulation, analytical models, and experiments,” Chem. Phys. Lett. 158, 12–17 (1989). [CrossRef]
  15. G. A. Bickel, F. C. Sopchyshyn, G. A. McRae, Z. H. Walker, L. W. Green, “Determination of hydrogen and deuterium in Zr-2.5Nb by laser ablation,” Nucl. Instrum. Methods Phys. Res. B 140, 217–228 (1998). [CrossRef]
  16. L. Ojamäe, K. Hermansson, C. Pisani, M. Causà, C. Roetti, “Structural, vibrational and electronic properties of a crystalline hydrate from ab initio periodic Hartree–Fock calculations,” Acta Crystallogr. B 50, 268–279 (1994). [CrossRef]
  17. G. C. Eiden, J. E. Anderson, N. S. Nogar, “Resonant laser ablation: semiquantitative aspects and threshold effects,” Microchem. J. 50, 289–300 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited