OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 9 — Mar. 20, 1999
  • pp: 1494–1501

Application of antimonide lasers for gas sensing in the 3–4-µm range

Peter Werle and Andrei Popov  »View Author Affiliations

Applied Optics, Vol. 38, Issue 9, pp. 1494-1501 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (861 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Antimonide semiconductor laser devices designed for continuous-wave emission in the 3–4-µm spectral range have been investigated with respect to spectroscopic applications. Representative data on the mode structure, output power, noise characteristics, far-field pattern, and modulation response are presented. Selected laser devices have been applied for methane (CH4) and formaldehyde (HCHO) measurements by use of a high-frequency modulated diode laser spectrometer. From an Allan variance analysis of experimental data a detection limit for HCHO of 120 pptv (where 1 pptv = 10-12 volume mixing ratio) with a 40-s integration time and for CH4 of 2 ppbv (where 1 ppbv = 10-9 volume mixing ratio) with 20-s integration time were determined. The results show that, for selected gases, InAsSb lasers can be an alternative to lead-salt diode lasers.

© 1999 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(140.2020) Lasers and laser optics : Diode lasers
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6380) Spectroscopy : Spectroscopy, modulation

Original Manuscript: June 17, 1998
Revised Manuscript: August 27, 1998
Published: March 20, 1999

Peter Werle and Andrei Popov, "Application of antimonide lasers for gas sensing in the 3–4-µm range," Appl. Opt. 38, 1494-1501 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Werle, “A review of recent advances in semiconductor laser based trace gas analyzers,” Spectrochim. Acta A 54, 197–236 (1998) and references therein. [CrossRef]
  2. P. Werle, R. Mücke, F. D’Amato, T. Lancia, “Near-infrared trace gas sensors based on room temperature diode-lasers,” Appl. Phys. B 67, 307–315 (1998). [CrossRef]
  3. R. U. Martinelli, R. J. Menna, P. K. York, D. Z. Gabuzov, H. Lee, J. Abeles, N. A. Morris, J. C. Conolly, S. Y. Narayan, J. S. Vermaak, G. H. Olsen, D. E. Cooper, C. B. Carlisle, H. Riris, “Tunable single-frequency III–V semiconductor diode lasers with wavelengths from 0.76 to 2.7 µm,” in Application of Tunable Diode Lasers and Other Infrared Sources for Atmospheric Studies and Industrial Monitoring, A. Fried, ed., Proc. SPIE2834, 2–16 (1996). [CrossRef]
  4. H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., (Wiley, New York, 1994).
  5. A. Popov, V. Sherstnev, Y. Yakovlev, R. Mücke, P. Werle, “High power InAsSb/InAsSbP double heterostructure lasers for continuous wave operation at 3.6 µm,” Appl. Phys. Lett. 68, 2790–2792 (1996). [CrossRef]
  6. A. Popov, V. Sherstnev, Y. Yakovlev, R. Mücke, P. Werle, “Single-frequency InAsSb lasers emitting at 3.4 µm,” Spectrochim. Acta A 52, 863–870 (1996). [CrossRef]
  7. A. Popov, A. Baranov, V. Sherstnev, Y. Yakovlev, B. Scheumann, R. Mücke, P. Werle, “Investigation of the mode structure and noise characteristics of InAsSb/InAsSbP lasers with respect to spectroscopic applications,” Infrared Phys. Technol. 37, 117–121 (1996). [CrossRef]
  8. A. Popov, V. Sherstnev, Y. Yakovlev, R. Mücke, P. Werle, “Relaxation oscillations in single-frequency InAsSb narrow band-gap lasers,” Appl. Phys. Lett. 72, 3428–3430 (1998). [CrossRef]
  9. A. Popov, V. Sherstnev, Y. Yakovlev, R. Mücke, P. Werle, “Tuning and spectral performance of mid-infrared InAsSb lasers,” in Application of Tunable Diode Lasers and Other Infrared Sources for Atmospheric Studies and Industrial Monitoring, A. Fried, ed., Proc. SPIE2834, 46–56 (1996). [CrossRef]
  10. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Brenner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular databases editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992). [CrossRef]
  11. A. Fried, S. Sewell, B. Henry, B. P. Wert, T. Gilpin, J. Drummond, “Tunable diode laser absorption spectrometer for ground based measurements of formaldehyde,” J. Geophys. Res. 102, 6253–6266 (1997). [CrossRef]
  12. R. Kormann, K. Maurer, R. Mücke, F. Slemr, P. Werle, R. Zitzelsberger, U. Parchatka, T. Zenker, D. Trapp, H. Fischer, “Application of two tunable diode laser spectrometers and other chemical sensors in an intercomparison of formaldehyde measurements,” in Proceedings of EUROTRAC Symposium ’96 by P. M. Borrell et al., eds. (Computational Mechanics, Southhampton, England, 1996), pp. 715–719 (1996).
  13. D. G. Lancaster, D. Richter, R. F. Curl, F. K. Tittel, “Real-time mesurements of trace gases using a compact difference-frequency-based sensor operating at 3.5 µm,” Appl. Phys. B 67, 339–345 (1998). [CrossRef]
  14. L. Newman, ed., Measurement Challenges in Atmospheric Chemistry (American Chemical Society, Washington, D.C., 1993). [CrossRef]
  15. S. B. Verma, F. G. Ullman, D. Billesbach, R. J. Clement, J. Kim, E. S. Verry, “Eddy correlation measurements of methane flux in a northern peatland ecosystem,” Boundary-Layer Meteorol. 58, 289–304 (1992). [CrossRef]
  16. G. C. Edwards, H. H. Neumann, G. den Hartog, G. W. Thurtell, G. Kidd, “Eddy correlation measurements of methane fluxes using a tunable diode laser at the Kinosheo Lake tower site during the Northern Wetlands Study (NOWES),” J. Geophys. Res. 99 (D1) , 1511–1517 (1994). [CrossRef]
  17. R. A. Rooth, N. V. Kema, “Spectroscopic measurements of the ν2 + 2ν3 band of CH4 with a 1.3 µm InGaAsP diode laser,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers (Kluwer, Dordrecht, The Netherlands, 1992), pp. 265–273.
  18. D. C. Hovde, A. C. Stanton, T. P. Meyers, D. R. Matt, “Methane emission from a landfill measured by eddy correlation using a fast response diode laser sensor,” J. Atmos. Chem. 20, 141–162 (1995). [CrossRef]
  19. P. Werle, “Laser excess noise and interferometric effects in frequency modulated diode laser spectrometers,” Appl. Phys. B 60, 499–506 (1995). [CrossRef]
  20. P. Werle, R. Mücke, F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode laser absorption spectroscopy,” Appl. Phys. B 57, 131–139 (1993). [CrossRef]
  21. P. Werle, B. Scheumann, J. Schandl, “Real time signal processing concepts for trace gas analysis by TDLAS,” Opt. Eng. 33, 3093–3105 (1994). [CrossRef]
  22. P. Werle, B. Jänker, “High frequency modulation spectroscopy: phase noise and refractive index fluctuations in optical multipass cells,” Opt. Eng. 35, 2051–2057 (1996). [CrossRef]
  23. P. Werle, F. Slemr, “Signal-to-noise ratio analysis in laser absorption spectroscopy using optical multipass cells,” Appl. Opt. 30, 430–434 (1991). [CrossRef] [PubMed]
  24. P. Werle, S. Lechner, “Recent findings and approaches for the suppression of fluctuations and background drifts in tunable diode laser spectroscopy,” in Application of Tunable Diode Lasers and Other Infrared Sources for Atmospheric Studies and Industrial Monitoring, A. Fried, ed., Proc. SPIE2834, 68–78 (1996). [CrossRef]
  25. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S.-N. G. Chu, A. Y. Cho, “High power mid-infrared (λ ≈ 5 µm) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680–3682 (1996). [CrossRef]
  26. R. Q. Yang, S. S. Pei, “Novel type-II quantum cascade lasers,” J. Appl. Phys. 79, 8197–8203 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited