OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 9 — Mar. 20, 1999
  • pp: 1523–1529

Fast in situ sizing technique for single levitated liquid aerosols

Björn Steiner, Burkhard Berge, Ralf Gausmann, Jens Rohmann, and Eckart Rühl  »View Author Affiliations


Applied Optics, Vol. 38, Issue 9, pp. 1523-1529 (1999)
http://dx.doi.org/10.1364/AO.38.001523


View Full Text Article

Enhanced HTML    Acrobat PDF (199 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fast in situ sizing technique for single levitated aerosol particles is presented. It makes use of the analysis of fast-Fourier-transformed vertically polarized Mie scattering patterns from single liquid aerosols levitated in a Paul-trap-type electrodynamic balance. The technique is shown to give reliable results for a test sphere of known physical properties. A first application to aqueous sodium chloride aerosol particles that changed size on humidity variation is presented, yielding good agreement with the full Mie theory.

© 1999 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(070.2590) Fourier optics and signal processing : ABCD transforms
(070.5010) Fourier optics and signal processing : Pattern recognition
(290.4020) Scattering : Mie theory
(290.5820) Scattering : Scattering measurements

History
Original Manuscript: April 10, 1998
Revised Manuscript: October 20, 1998
Published: March 20, 1999

Citation
Björn Steiner, Burkhard Berge, Ralf Gausmann, Jens Rohmann, and Eckart Rühl, "Fast in situ sizing technique for single levitated liquid aerosols," Appl. Opt. 38, 1523-1529 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-9-1523


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. L. Black, M. Q. McQuay, M. P. Bonin, “Laser-based techniques for particle-size measurement: a review of sizing methods and their industrial applications,” Prog. Energy Combust. Sci. 22, 267–306 (1996). [CrossRef]
  2. E. J. Davis, “Single aerocolloidal particle instrumentation and measurement,” in Surface and Colloid Science (Plenum, New York, 1987), Vol. 14, pp. 1–81.
  3. K. S. Carslaw, T. Peter, S. L. Clegg, “Modelling the composition of liquid stratospheric aerosols,” Rev. Geophys. 35, 125–154 (1997). [CrossRef]
  4. P. Massoli, F. Beretta, A. D’Alessio, M. Lazzaro, “Temperature and size of single transparent droplets by light scattering in the forward and rainbow regions,” Appl. Opt. 32, 3295–3301 (1993). [CrossRef] [PubMed]
  5. I. N. Tang, H. R. Munkelwitz, “Simultaneous determination of refractive index and density of an evaporating aqueous solution droplet,” Aerosol Sci. Technol. 15, 201–207 (1991). [CrossRef]
  6. H. H. Blau, M. L. Cohen, L. B. Lapson, P. von Thüna, R. T. Ryan, D. Watson, “A prototype cloud physics laser nephelometer,” Appl. Opt. 9, 1798–1803 (1970). [CrossRef] [PubMed]
  7. J. B. Riley, Y. C. Agrawal, “Sampling and inversion of data in diffraction particle sizing,” Appl. Opt. 30, 4800–4817 (1991). [CrossRef] [PubMed]
  8. E. D. Hirleman, P. A. Dellenback, “Adaptive Fraunhofer diffraction particle sizing instrument using a spatial light modulator,” Appl. Opt. 28, 4870–4878 (1989). [CrossRef] [PubMed]
  9. K. A. Kusters, J. G. Wijers, D. Thoenes, “Particle sizing by laser diffraction spectrometry in the anomalous regime,” Appl. Opt. 30, 4839–4847 (1989). [CrossRef]
  10. P. van de Meeren, M. Stastny, J. Vanderdeelen, L. Baert, “Particle sizing of concentrated emulsions using fibre optic quasi-elastic light scattering,” Colloid Surf. A 76, 125–133 (1993). [CrossRef]
  11. R. Finsy, “Particle sizing by quasi-elastic light scattering,” Adv. Colloid Interface Sci. 52, 79–143 (1994). [CrossRef]
  12. S. D. Coston, N. George, “Particle sizing by inversion of the optical transform pattern,” Appl. Opt. 30, 4785–4794 (1991). [CrossRef] [PubMed]
  13. L. A. Del Negro, D. W. Fahey, S. G. Donnelly, R. S. Gao, E. R. Keim, R. C. Wamsley, E. L. Woodbridge, J. E. Dye, D. Baumgardner, B. W. Gandrud, J. C. Wilson, H. H. Jonsson, M. Loewenstein, J. R. Podolske, C. R. Webster, R. D. May, D. R. Worsnop, A. Tabazadeh, M. A. Tolbert, K. K. Kelly, K. R. Chan, “Evaluating the role of NAT, NAD, and liquid H2SO4/H2O/HNO3 solutions in antarctic polar stratospheric cloud aerosols: observations and implications,” J. Geophys. Res. 102, 13255–13282 (1997). [CrossRef]
  14. M. Cacciani, G. Fiocco, P. Colagrande, P. Di Girolamo, A. di Sarra, D. Fua, “Lidar observations of polar stratospheric clouds at the South Pole, 1. Stratospheric unperturbed conditions, 1990,” J. Geophys. Res. 102, 12937–12943 (1997). [CrossRef]
  15. M. Cacciani, P. Colagrande, A. di Sarra, D. Fua, P. Di Girolamo, G. Fiocco, “Lidar observations of polar stratospheric clouds at the South Pole, 2. Stratospheric perturbed conditions, 1992 and 1993,” J. Geophys. Res. 102, 12945–12955 (1997). [CrossRef]
  16. S. A. Kwon, Y. Iwasaka, T. Shibata, T. Sakai, “Vertical distribution of atmospheric particles and water vapor densities in the free troposphere: lidar measurement in spring and summer in Nagoya, Japan,” Atmos. Environ. 31, 1459–1465 (1997). [CrossRef]
  17. K. Matsumoto, H. Tanaka, I. Nagao, Y. Ishizaka, “Contribution of particulate sulfate and organic carbon to cloud condensation nuclei in the marine atmosphere,” Geophys. Res. Lett. 24, 655–658 (1997). [CrossRef]
  18. C. Bedos, K. Suhre, R. Rosset, “Adaptation of a cloud activation scheme to a spectral-chemical aerosol model,” Atmos. Res. 41, 267–279 (1996). [CrossRef]
  19. F. T. Gucker, J. J. Egan, “Measurement of the angular variation of light scattered from single aerosol droplets,” J. Colloid Sci. 16, 84–88 (1961). [CrossRef]
  20. H. H. Blau, D. J. McCleese, D. Watson, “Scattering by individual transparent spheres,” Appl. Opt. 9, 2522–2528 (1970). [CrossRef] [PubMed]
  21. E. J. Davis, A. K. Ray, “Single aerosol particle size and mass measurements using an electrodynamic balance,” J. Colloid Interface Sci. 75, 366–576 (1980). [CrossRef]
  22. G. Sageev, R. C. Flagan, J. H. Seinfeld, S. Arnold, “Condensation rates of water on aqueous droplets in the transition regime,” J. Colloid Interface Sci. 113, 421–429 (1986). [CrossRef]
  23. A. Pluchino, “Scattering photometer for measuring single ice crystals and evaporation and condensation rates of liquid droplets,” J. Opt. Soc. Am. A 4, 614–620 (1987). [CrossRef]
  24. B. Krämer, M. Schwell, O. Hübner, H. Vortisch, T. Leisner, E. Rühl, H. Baumgärtel, L. Wöste, “Homogeneous ice nucleation observed in single levitated micro droplets,” Ber. Bunsenges. Phys. Chem. 100, 1911–1914 (1996). [CrossRef]
  25. E. J. Davis, M. A. Bridges, “The Rayleigh limit of charge revisited: light scattering from exploding droplets,” J. Aerosol Sci. 25, 1179–1199 (1993). [CrossRef]
  26. I. N. Tang, A. C. Tricido, K. H. Fung, “Thermodynamic and optical properties of sea salt aerosols,” J. Geophys. Res. 102, 23269–23275 (1997). [CrossRef]
  27. S. Arnold, T. R. O’Keeffe, K. M. Leung, L. M. Folan, T. Scalese, A. Pluchino, “Optical bistability of an aqueous aerosol particle detected through light scattering: theory and experiment,” Appl. Opt. 29, 3473–3478 (1990). [CrossRef] [PubMed]
  28. E. J. Davis, “Microchemical engineering: the physics and chemistry of the microparticle,” Adv. Chem. Eng. 18, 1–94 (1992).
  29. C. F. Bohren, D. R. Huffman, Scattering of Light by Small Particles (Wiley, New York, 1983).
  30. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  31. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).
  32. A. G. Bailey, Electrostatic Spraying of Liquids (Wiley, New York, 1988).
  33. M. Faubel, B. Steiner, “Strong bipolar electrokinetic charging of thin liquid jets emerging from 10 µm PtIr nozzles,” Ber. Bunsenges. Phys. Chem. 96, 1167–1172 (1992). [CrossRef]
  34. W. Paul, “Electromagnetic traps for charged and neutral particles,” Rev. Mod. Phys. 62, 531–540 (1990). [CrossRef]
  35. P. E. Toschek, “Atomic particles in traps,” in New Trends in Atomic Physics, G. Grynberg, R. Stora, eds. (North-Holland, Amsterdam, 1984), Vol. I, pp. 383–450.
  36. R. F. Wuerker, H. Shelton, R. V. Langmuir, “Electrodynamic containment of charged particles,” J. Appl. Phys. 30, 342–349 (1959). [CrossRef]
  37. E. Fischer, “Die dreidimensionale Stabilisierung von Ladungsträgern in einem Vierpolfeld,” Z. Phys. 156, 1–26 (1959). [CrossRef]
  38. Eccosphere, trade name of Emerson and Cuming Composite Materials, Inc., 59 Walpole Street, Canton, Mass.
  39. I. N. Tang, H. R. Munkelwitz, N. Wang, “Water activity measurements with single suspended droplets: the NaCl–H2O and KCl–H2O systems,” J. Colloid Interface Sci. 114, 409–415 (1986). [CrossRef]
  40. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  41. J. V. Dave, “Subroutines for computing the parameters of the electromagnetic radiation scattered by spheres,” (IBM Palo Alto Scientific Center, Palo Alto, Calif., 1968).
  42. W. J. Lentz, “Generating Bessel functions in Mie scattering calculations using continued fractions,” Appl. Opt. 15, 668–671 (1976). [CrossRef] [PubMed]
  43. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980). [CrossRef] [PubMed]
  44. G. Grehan, B. Maheu, G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986). [CrossRef] [PubMed]
  45. G. Gouesbet, G. Grehan, B. Maheu, “Computations of the gn coefficients in the generalized Lorenz–Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988). [CrossRef] [PubMed]
  46. H. Polaert, G. Gouesbet, G. Grehan, “Measurement of beam-shape coefficients in the generalized Lorenz–Mie theory for the on-axis case,” Appl. Opt. 37, 5005–5013 (1998). [CrossRef]
  47. K. H. Hesselbacher, K. Anders, A. Frohn, “Experimental investigation of Gaussian beam effects on the accuracy of a droplet sizing method,” Appl. Opt. 30, 4930–4935 (1991). [CrossRef] [PubMed]
  48. D. C. Taflin, S. H. Zhang, T. Allen, E. J. Davis, “Measurement of droplet interfacial phenomena by light-scattering techniques,” AIChE J. 34, 1310–1320 (1988). [CrossRef]
  49. R. C. Weast, ed., Handbook of Chemistry and Physics, 75th ed. (CRC Press, Boca Raton, Fla., 1994).
  50. A. K. Ray, A. Souyri, E. J. Davis, T. M. Allen, “Precision of light scattering techniques for measuring optical parameters of microspheres,” Appl. Opt. 30, 3974–3983 (1991). [CrossRef] [PubMed]
  51. S. Arnold, E. K. Murphy, G. Sageev, “Aerosol particle molecular spectroscopy,” Appl. Opt. 24, 1048–1053 (1985). [CrossRef] [PubMed]
  52. G. Sageev, R. C. Flagan, J. H. Seinfeld, “Fourier transform infrared spectrometer for a single aerosol particle,” Rev. Sci. Instrum. 58, 584–587 (1987). [CrossRef]
  53. G. Sageev, S. Arnold, R. C. Flagan, J. H. Seinfeld, “Fourier transform infrared spectroscopy of a single aerosol particle,” J. Chem. Phys. 86, 5897–5903 (1987). [CrossRef]
  54. K. Anders, N. Roth, A. Frohn, “New technique for investigating phase transition processes of optically levitated droplets consisting of water and sulfuric acid,” J. Geophys. Res. 101, 19223–19229 (1996). [CrossRef]
  55. I. N. Tang, “Phase transformation and growth of aerosol particles composed of mixed salts,” J. Aerosol Sci. 7, 361–371 (1976). [CrossRef]
  56. M. L. Shulman, R. J. Charlson, E. J. Davis, “The effects of atmospheric organics on aqueous droplet evaporation,” J. Aerosol Sci. 28, 737–752 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited