OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 9 — Mar. 20, 1999
  • pp: 1543–1551

Comparison of column ozone retrievals by use of an UV multifilter rotating shadow-band radiometer with those from Brewer and Dobson spectrophotometers

James Slusser, James Gibson, David Bigelow, Donald Kolinski, Wanfeng Mou, Gloria Koenig, and Arthur Beaubien  »View Author Affiliations

Applied Optics, Vol. 38, Issue 9, pp. 1543-1551 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The U.S. Department of Agriculture UV-B Monitoring Program measures ultraviolet light at seven wavelengths from 300 to 368 nm with an ultraviolet multifilter rotating shadow-band radiometer (UV-MFRSR) at 25 sites across the United States, including Mauna Loa, Hawaii. Column ozone has been retrieved under all-sky conditions near Boulder, Colorado (40.177 °N, 105.276 °W), from global irradiances of the UV-MFRSR 332- and 305-nm channels (2 nm FWHM) using lookup tables generated from a multiple-scattering radiative transfer code suitable for solar zenith angles (SZA’s) up to 90°. The most significant sources of error for UV-MFRSR column ozone retrievals at SZA’s less than 75° are the spectral characterizations of the filters and the absolute calibration uncertainty, which together yield an estimated uncertainty in ozone retrievals of ±4.0%. Using model sensitivity studies, we determined that the retrieved column ozone is relatively insensitive (<±2%) to typical variations in aerosol optical depth, cloud cover, surface pressure, stratospheric temperature, and surface albedo. For 5 months in 1996–1997 the mean ratio of column ozone retrieved by the UV-MFRSR divided by that retrieved by the collocated Brewer was 1.024 and for the UV-MFRSR divided by those from a nearby Dobson was 1.025. The accuracy of the retrieval becomes unreliable at large SZA’s of more than 75° as the detection limit of the 305-nm channel is reached and because of overall angular response errors. The UV-MFRSR advantages of relatively low cost, unattended operation, automated calibration stability checks using Langley plots, and minimal maintenance make it a unique instrument for column ozone measurement.

© 1999 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.4950) Atmospheric and oceanic optics : Ozone
(040.7190) Detectors : Ultraviolet
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(350.2460) Other areas of optics : Filters, interference

Original Manuscript: May 12, 1998
Revised Manuscript: October 19, 1998
Published: March 20, 1999

James Slusser, James Gibson, David Bigelow, Donald Kolinski, Wanfeng Mou, Gloria Koenig, and Arthur Beaubien, "Comparison of column ozone retrievals by use of an UV multifilter rotating shadow-band radiometer with those from Brewer and Dobson spectrophotometers," Appl. Opt. 38, 1543-1551 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. A. Newman, J. F. Gleason, R. D. McPeters, R. S. Stolarski, “Anomalously low ozone over the Arctic,” Geophys. Res. Lett. 24, 2689–2692 (1997). [CrossRef]
  2. J. R. Herman, P. K. Bhartia, J. Ziemke, Z. Ahmad, D. Larko, “UV-B increases (1979–1992) from decreases in total ozone,” Geophys. Res. Lett. 23, 2117–2120 (1996). [CrossRef]
  3. R. D. Bojkov, V. E. Fioletov, “Estimating the global ozone characteristics during the last 30 years,” J. Geophys. Res. 100, 16,537–16,551 (1995). [CrossRef]
  4. D. S. Bigelow, J. R. Slusser, A. F. Beaubien, J. H. Gibson, “The USDA Ultraviolet Radiation Monitoring Program,” Bull. Am. Meteorol. Soc. 79, 601–615 (1998). [CrossRef]
  5. L. Harrison, J. Michalsky, J. Berndt, “Automated multi-filter rotating shadow-band radiometer: an instrument for optical depth and radiation measurements,” Appl. Opt. 33, 5118–5125 (1994). [CrossRef] [PubMed]
  6. J. B. Kerr, C. T. McElroy, W. F. J. Evans, “The automated Brewer spectrophotometer for measurement of SO2, O3, and aerosols,” in the Proceedings of the WMO/AMS/CMOS Symposium on Meteorological Observations and Instrumentation (American Meteorological Society, Boston, Mass., 1983), pp. 470–472.
  7. J. B. Kerr, C. T. McElroy, D. I. Wardle, R. A. Olafson, W. F. J. Evans, “The automated Brewer spectrophotometer,” in Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium, Halkidiki, Greece, C. S. Zeferos, A. Ghazi, eds., (Reidel, Hingham, Mass., 1985), pp. 396–401.
  8. J. B. Kerr, I. A. Asbridge, W. F. J. Evans, “Intercomparison of total ozone measured by the Brewer and Dobson spectrophotometers at Toronto,” J. Geophys. Res. 93, 11,129–11,140 (1988). [CrossRef]
  9. A. M. Bass, R. J. Paur, “The ultraviolet cross sections of ozone. I. The measurements,” in Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium, Halkidiki, Greece, C. S. Zeferos, A. Ghazi, eds., (Reidel, Hingham, Mass., 1985), pp. 611–617.
  10. V. E. Fioletov, J. Kerr, D. I. Wardle, “The relationship between total ozone and spectral UV irradiance from Brewer observations and its use for derivation of total ozone for UV measurements,” Geophys. Res. Lett. 24, 2997–3000 (1997). [CrossRef]
  11. G. M. B. Dobson, “Observers’ handbook for the ozone spectrophotometer,” Ann. Int. Geophys. Year 5, 46–89 (1957).
  12. W. D. Komhyr, “Operations handbook—ozone observations with a Dobson spectrophotometer,” in WMO Global Ozone Research and Monitoring Project, (World Meteorological Organization, Geneva Switzerland, 1980).
  13. W. D. Komhyr, R. D. Evans, “Dobson spectrophotometer total ozone measurement errors caused by interfering absorbing species such as SO2, NO2, and photochemically produced O3 in polluted air,” Geophys. Res. Lett. 7, 157–160 (1980). [CrossRef]
  14. R. D. Evans, NOAA/CMDL, Boulder Colorado (personal communication, 1998).
  15. C. L. Mateer, J. J. Deluisi, “A new Umkehr inversion algorithm,” J. Atmos. Terr. Phys. 54, 537–556 (1992). [CrossRef]
  16. W. D. Komhyr, C. L. Mateer, R. D. Hudson, “Effective Bass-Paur 1985 ozone absorption coefficients for use with Dobson ozone spectrophotometers,” J. Geophys. Res. 98, 451–465 (1993). [CrossRef]
  17. B. Schmid, C. Wehrli, “Comparison of Sun photometer calibration by use of the Langley technique and the standard lamp,” Appl. Opt. 34, 4500–4512 (1995). [CrossRef] [PubMed]
  18. B. Schmid, P. R. Spyak, S. F. Biggar, C. Wehrli, J. Sekler, T. Ingold, C. Matzler, N. Kampfer, “Evaluation of the applicability of solar and lamp radiometric calibrations of a precision Sun photometer operating between 300 and 1025 nm,” Appl. Opt. 37, 3923–3941 (1998). [CrossRef]
  19. L. Harrison, J. Michalsky, “Objective algorithms for the retrieval of optical depths from ground-based measurements,” Appl. Opt. 33, 5126–5132 (1994). [CrossRef] [PubMed]
  20. M. E. VanHoosier, J. Bartoe, G. Brueckner, D. Prinz, “Absolute solar spectral irradiance 120 nm-410 nm (results from the solar ultraviolet spectral irradiance monitor—SUSIM—experiment onboard Spacelab 2),” Astrophys. Lett. Commun. 27, 163–167 (1988).
  21. K. Stamnes, J. R. Slusser, M. Bowen, “Derivation of total ozone abundance and cloud effects from spectral irradiance measurements,” Appl. Opt. 30, 4418–4426 (1991). [CrossRef] [PubMed]
  22. B. Mayer, A. Kylling, S. Madronich, G. Seckmeyer, “Enhanced absorption due to multiple scattering in clouds: experimental evidence and theoretical evidence,” J. Geophys. Res. 103, 31,241–31,254 (1998). [CrossRef]
  23. K. Stamnes, S. Pegau, J. Frederick, “Uncertainties in total ozone amounts inferred from zenith sky observations: implications for ozone trend analysis,” J. Geophys. Res. 95, 16,523–16,528 (1990). [CrossRef]
  24. B. Mayer, G. Seckmeyer, “Retrieving ozone column from spectral direct and global UV irradiance measurements,” presented at the XVIII Quadrennial Ozone Symposium, University of L’Aquila, L’Aquila, Italy, 12–21 September 1996.
  25. C. R. Booth, “Synthetic UV spectroradiometry,” in IRS ’96: Current Problems in Atmospheric Radiation, W. L. Smith, K. Stamnes, eds. (Deepak, Hampton, Va., 1997), pp. 849–852.
  26. A. Dahlback, “Measurements of biologically effective UV doses, total ozone abundances, and cloud effects with multichannel, moderate bandwidth filter instruments,” Appl. Opt. 35, 6514–6521 (1996). [CrossRef] [PubMed]
  27. K. Stamnes, S. C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef] [PubMed]
  28. R. E. Basher, W. A. Matthews, “Problems in the use of interference filters for spectrophotometric determination of total ozone,” J. Appl. Meteorol. 16, 795–802 (1977). [CrossRef]
  29. L. E. Flynn, G. J. Labow, M. A. Rawlins, R. A. Beach, C. A. Simmons, C. M. Schubert, “Estimation of ozone with total ozone portable spectroradiometer instruments: I. Theoretical model and error analysis,” Appl. Opt. 35, 6076–6083 (1996). [CrossRef] [PubMed]
  30. G. J. Labow, L. E. Flynn, M. A. Rawlins, R. A. Beach, C. A. Simmons, C. M. Schubert, “Estimation of ozone with total ozone portable spectroradiometer instruments: II. Practical operation and comparisons,” Appl. Opt. 35, 6084–6089 (1996). [CrossRef] [PubMed]
  31. A. Dahlback, K. Stamnes, “A new spherical model for computing the radiation field available for photolysis and heating at twilight,” Planet. Space Sci. 39, 671–683 (1991). [CrossRef]
  32. S. Madronich, “UV radiation in the natural and perturbed atmosphere,” in Environmental Effects of Ultraviolet (UV) Radiation, (Lewis, Boca Raton, Fla., 1993), pp. 17–69.
  33. L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185-350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986). [CrossRef]
  34. L. Elterman, “UV, visible, and IR attenuation factors for altitudes to 50 km,” (U.S. Air Force Research Laboratory, Bedford, Mass., 1968).
  35. N. Krotkov, P. K. Bhartia, J. R. Herman, V. Fioletov, J. Kerr, “Satellite estimation of spectral surface UV irradiance in the presence of tropospheric aerosols. 1. Cloud-free case,” J. Geophys. Res. 103, 8779–8793 (1998). [CrossRef]
  36. J. Zeng, R. McKenzie, K. Stamnes, M. Wineland, “Measured UV spectra compared with discrete ordinate method simulations,” J. Geophys. Res. 99, 23,019–23,030 (1995). [CrossRef]
  37. K. F. Evans, “The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer,” J. Atmos. Sci. 55, 429–446 (1998). [CrossRef]
  38. J. J. Barnett, M. Corney, “Middle atmosphere reference model derived from satellite data,” in Middle Atmospheric Program Handbook, K. Labitzke, J. J. Barnett, B. Edwards, eds. (Scientific Committee on Solar Terrestral Physics, Urbana, Ill., 1985), Vol. 16.
  39. J. Michalsky, State University of New York, Albany, N.Y. (personal communication, 1998).
  40. D. S. Bigelow, Colorado State University, Fort Collins, Colo. (personal communication, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited