OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 9 — Mar. 20, 1999
  • pp: 1626–1629

How Big Should Hexagonal Ice Crystals be to Produce Halos?

Michael I. Mishchenko and Andreas Macke  »View Author Affiliations

Applied Optics, Vol. 38, Issue 9, pp. 1626-1629 (1999)

View Full Text Article

Acrobat PDF (177 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It has been hypothesized that the frequent lack of halos in observations of cirrus and contrails and laboratory measurements is caused by small ice crystal sizes that put the particles outside the geometrical optics domain of size parameters. We test this hypothesis by exploiting a strong similarity of ray tracing phase functions for finite hexagonal and circular ice cylinders and using <b><i>T</i></b>-matrix computations of electromagnetic scattering by circular cylinders with size parameters up to 180 in the visible. We conclude that well-defined halos should be observable for ice crystal size parameters of the order of 100 and larger and discuss remote-sensing implications of this result.

© 1999 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.2940) Atmospheric and oceanic optics : Ice crystal phenomena
(080.0080) Geometric optics : Geometric optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.0290) Scattering : Scattering

Michael I. Mishchenko and Andreas Macke, "How Big Should Hexagonal Ice Crystals be to Produce Halos?," Appl. Opt. 38, 1626-1629 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds. I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
  2. A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993).
  3. J. Iaquinta, H. Isaka, and P. Personne, “Scattering phase function of bullet rosette ice crystals,” J. Atmos. Sci. 52, 1401–1413 (1995).
  4. Y. Takano and K. N. Liou, “Radiative transfer in cirrus clouds. III: Light scattering by irregular ice crystals,” J. Atmos. Sci. 52, 818–837 (1995).
  5. P. Minnis, P. W. Heck, and D. F. Young, “Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. Part II: Verification of theoretical cirrus radiative properties,” J. Atmos. Sci. 50, 1305–1322 (1993).
  6. K. Sassen, N. C. Knight, Y. Takano, and A. J. Heymsfield, “Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies,” Appl. Opt. 33, 4590–4601 (1994).
  7. P. N. Francis, P. Hignett, and A. Macke, “The retrieval of cirrus cloud properties from aircraft multi-spectral reflectance measurements during EUCREX’93,” Q. J. R. Meteorol. Soc. 124, 1273–1291 (1998).
  8. P. J. Huffman and W. R. Thursby, “Light scattering by ice crystals,” J. Atmos. Sci. 26, 1073–1077 (1969).
  9. K. Sassen and K.-N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part I: Angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979).
  10. O. A. Volkovitskiy, L. N. Pavlova, and A. G. Petrushin, “Scattering of light by ice crystals,” Izvestiya. Atmos. Ocean. Phys. 16, 98–102 (1980).
  11. J. S. Foot, “Some observations of the optical properties of clouds. Part II: Cirrus,” Q. J. R. Meteorol. Soc. 114, 145–164 (1988).
  12. P. N. Francis, “Some aircraft observations of the scattering properties of ice crystals,” J. Atmos. Sci. 52, 1142–1154 (1995).
  13. P. Posse and W. von Hoyningen-Huene, “Information about scattering properties and particle characteristics of a stratiform cloud at Helgoland by remote optical measurements,” Contr. Atmos. Phys. 68, 359–366 (1995).
  14. O. Crépel, J. F. Gayet, J. F. Fournol, and S. Oschepkov, “A new airborne polar nephelometer for the measurements of optical and microphysical cloud properties. Part II: Preliminary tests,” Ann. Geophys. 15, 460–470 (1997).
  15. R. P. Lawson, A. J. Heymsfield, S. M. Aulenbach, and T. L. Jensen, “Shapes, sizes and light scattering properties of ice crystals in cirrus and a persistent contrail during SUCCESS,” Geophys. Res. Lett. 25, 1331–1334 (1998).
  16. P. Minnis, K.-N. Liou, and Y. Takano, “Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. Part I: Parameterization of radiance fields,” J. Atmos. Sci. 50, 1279–1304 (1993).
  17. M. I. Mishchenko, W. B. Rossow, A. Macke, and A. A. Lacis, “Sensitivity of cirrus cloud albedo, bidirectional reflectance and optical thickness retrieval accuracy to ice particle shape,” J. Geophys. Res. 101, 16,973–16,985 (1996).
  18. C. M. R. Platt, N. L. Abshire, and G. T. McNice, “Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
  19. H. Chepfer, G. Brogniez, and Y. Fouquart, “Cirrus clouds’ microphysical properties deduced from POLDER observations,” J. Quant. Spectrosc. Radiat. Transfer 60, 375–390 (1998).
  20. W. L. Eberhard, “Cirrus properties deduced from CO2 lidar observations of zenith-enhanced backscatter from oriented crystals,” NASA Conf. Publ. 3238, 9–12 (1993).
  21. K.-D. Rockwitz, “Scattering properties of horizontally oriented ice crystal columns in cirrus clouds. Part 1,” Appl. Opt. 28, 4103–4110 (1989).
  22. R. Greenler, Rainbows, Halos, and Glories (Cambridge U. Press, New York, 1990).
  23. J. D. Spinhirne, “Cirrus infrared parameters and shortwave reflectance relations from observations,” J. Atmos. Sci. 53, 1438–1458 (1996).
  24. J. Descloitres, J. C. Buriez, F. Parol, and Y. Fouquart, “POLDER observations of cloud bidirectional reflectances compared to a plane-parallel model using the International Cloud Climatology Project cloud phase functions,” J. Geophys. Res. 103, 11,411–11,418 (1998).
  25. K. Sassen, “Remote sensing of planar ice crystal fall attitudes,” J. Meteorol. Soc. Jpn. 58, 422–429 (1980).
  26. J. D. Klett, “Orientation model for particles in turbulence,” J. Atmos. Sci. 52, 2276–2285 (1995).
  27. C. M. R. Platt, J. D. Spinhirne, and W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11,151–11,164 (1989).
  28. W. P. Arnott, Y. Y. Dong, J. Hallett, and M. R. Poelott, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
  29. K. Sassen, “Contrail-cirrus and their potential for regional climate change,” Bull. Am. Meteorol. Soc. 78, 1885–1903 (1997).
  30. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
  31. A. Macke and M. I. Mishchenko, “Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles,” Appl. Opt. 35, 4291–4296 (1996).
  32. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984).
  33. A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
  34. P. Yang and K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contr. Atmos. Phys. 71, 223–248 (1998).
  35. M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16,831–16,847 (1997).
  36. P. L. Marston, “Geometrical and catastrophe optics methods in scattering,” in Physical Acoustics, A. D. Pierce and R. N. Thurston, eds. (Academic, San Diego, Calif., 1992), Vol. 21, pp. 1–234.
  37. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited