OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 9 — Mar. 20, 1999
  • pp: 1630–1635

Optical properties and size distribution of aerosols derived from simultaneous measurements with lidar, a sunphotometer, and an aureolemeter

Tadahiro Hayasaka, Yasuhiko Meguro, Yasuhiro Sasano, and Tamio Takamura  »View Author Affiliations


Applied Optics, Vol. 38, Issue 9, pp. 1630-1635 (1999)
http://dx.doi.org/10.1364/AO.38.001630


View Full Text Article

Enhanced HTML    Acrobat PDF (179 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new method is proposed to derive the optical properties and size distribution of aerosol in an air column from simultaneous measurements of the backscattering coefficient, the optical thickness, and the solar aureole intensity with lidar, a sunphotometer, and an aureolemeter. Inasmuch as the backscattering properties and the optical thickness depend on both the complex refractive index and the size distribution, whereas the forward-scattering properties depend mainly on the size distribution, real and imaginary indices of refraction and size distributions of aerosol are retrieved from these measurements. The real and the imaginary parts of the complex refractive index of an aerosol at a wavelength of 500 nm during the period from November 1991 to March 1992 obtained in Tsukuba, Japan, were estimated to be 1.46–1.48 and 0.005–0.014, respectively. It is inferred from the size distribution and an optical thickness fraction of stratospheric aerosols in the total columnar aerosols that these results reflect the influences of stratospheric aerosols that originated from the Mt. Pinatubo eruption.

© 1999 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(120.5240) Instrumentation, measurement, and metrology : Photometry
(120.5710) Instrumentation, measurement, and metrology : Refraction
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar
(290.1090) Scattering : Aerosol and cloud effects

History
Original Manuscript: August 10, 1998
Revised Manuscript: November 30, 1998
Published: March 20, 1999

Citation
Tadahiro Hayasaka, Yasuhiko Meguro, Yasuhiro Sasano, and Tamio Takamura, "Optical properties and size distribution of aerosols derived from simultaneous measurements with lidar, a sunphotometer, and an aureolemeter," Appl. Opt. 38, 1630-1635 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-9-1630


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Intergovernmental Panel on Climate Change, Climate Change 1995. The Science of Climate Change (Cambridge U. Press, Cambridge, 1996), p. 572.
  2. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974). [CrossRef]
  3. M. D. King, Harshbadhan, “Comparative accuracy of selected multiple scattering approximations,” J. Atmos. Sci. 43, 784–801 (1986). [CrossRef]
  4. G. Yamamoto, M. Tanaka, “Increase of global albedo due to air pollution,” J. Atmos. Sci. 29, 1405–1412 (1972). [CrossRef]
  5. J. A. Coakley, R. D. Cess, F. B. Yurevich, “The effect of tropospheric aerosols on the energy’s radiation budget: a parameterization for climate models,” J. Atmos. Sci. 40, 116–138 (1983). [CrossRef]
  6. H. E. Gerber, “Absorption of light by atmospheric aerosol particles: review of instrumentation and measurements,” in Light Absorption by Aerosol Particles, H. E. Gerber, E. E. Hindman, eds. (Spectrum, Hampton, Va., 1982), pp. 21–53.
  7. M. Tanaka, T. Hayasaka, T. Nakajima, “Airborne measurements of optical properties of tropospheric aerosols over an urban area,” J. Meteorol. Soc. Jpn. 68, 335–345 (1990).
  8. M. Tanaka, T. Nakajima, T. Takamura, “Simultaneous determination of complex refractive index and size distribution of airborne and water suspended particles from light scattering measurements,” J. Meteorol. Soc. Jpn. 60, 1259–1272 (1982).
  9. T. Hayasaka, T. Nakajima, S. Ohta, M. Tanaka, “Optical and chemical properties of urban aerosols in Japan,” Atmos. Environ. A 26, 2055–2062 (1992). [CrossRef]
  10. T. Takamura, Y. Sasano, T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sunphotometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994). [CrossRef] [PubMed]
  11. G. Yamamoto, M. Tanaka, “Determination of aerosol size distribution from spectral attenuation measurements,” Appl. Opt. 8, 447–453 (1969). [CrossRef] [PubMed]
  12. T. Nakajima, M. Tanaka, T. Hayasaka, Y. Miyake, Y. Nakanishi, K. Sasamoto, “Airborne measurements of the optical stratification of aerosols in turbid atmospheres,” Appl. Opt. 25, 4374–4381 (1986). [CrossRef] [PubMed]
  13. G. S. Kent, “Deduction of aerosol concentrations from 1.06-µm lidar measurements,” Appl. Opt. 17, 3763–3773 (1978). [CrossRef] [PubMed]
  14. G. S. Kent, F. Köpp, Ch. Werner, “A joint lidar solar radiometer experiment,” J. Appl. Meteorol. 18, 1649–1655 (1979). [CrossRef]
  15. J. A. Reagan, D. M. Byrne, M. D. King, J. D. Spinhirne, B. M. Herman, “Determination of the complex refractive index and size distribution of atmospheric particulates from bistatic-monostatic lidar and solar radiometer measurements,” J. Geophys. Res. 85, 1591–1599 (1980). [CrossRef]
  16. T. Hayasaka, Y. Meguro, Y. Sasano, T. Takamura, “Stratification and size distribution of aerosols retrieved from simultaneous measurements with lidar, sunphotometer and aureolemeter,” Appl. Opt. 37, 961–970 (1998). [CrossRef]
  17. H. Shimizu, Y. Sasano, H. Nakane, N. Sugimoto, I. Matsui, N. Takeuchi, “Large scale laser radar for measuring aerosol distribution over a wide area,” Appl. Opt. 24, 617–626 (1985). [CrossRef] [PubMed]
  18. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984). [CrossRef] [PubMed]
  19. Y. Sasano, H. Nakane, “Quantitative analysis of RHI lidar data by an iterative adjustment of the boundary condition term in the lidar solution,” Appl. Opt. 26, 615–616 (1987). [CrossRef] [PubMed]
  20. J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and influence of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980). [CrossRef]
  21. P. B. Russell, J. M. Livingston, “Slant-lidar aerosol extinction measurements and their relation to measured and calculated albedo changes,” J. Appl. Meteorol. 23, 1204–1221 (1984).
  22. J. B. Pollack, J. N. Cuzzi, “Scattering by nonspherical particles of size comparable to a wavelength: a new semi-empirical theory and its application to tropospheric aerosols,” J. Atmos. Sci. 37, 868–881 (1980). [CrossRef]
  23. S. Asano, A. Uchiyama, M. Shiobara, “Spectral optical thickness and size distribution of the Pinatubo volcanic aerosols as estimated by ground-based sunphotometry,” J. Meteorol. Soc. Jpn. 71, 165–173 (1993).
  24. T. Hayasaka, N. Iwasaka, G. Hashida, I. Takizawa, M. Tanaka, “Changes in stratospheric aerosols and solar insolation due to Mt. Pnatubo eruption as observed over the Western Pacific,” Geophys. Res. Lett. 21, 1137–1140 (1994). [CrossRef]
  25. A. Deepak, H. E. Gerber, eds. Report of the Experts’ Meeting on Aerosols and Their Climatic Effects, (World Meteorological Organisation, Geneva, 1983), p. 107.
  26. T. Takamura, M. Tanaka, “Some uncertainties in optical properties of aerosols estimated from light scattering measurements,” J. Meteorol. Soc. Jpn. 63, 969–974 (1985).
  27. N. Niimura, K. Okada, X.-B. Fan, K. Kai, K. Arao, G.-Y. Shi, S. Takahashi, “Formation of Asian dust-storm particles mixed internally with sea salt in the atmosphere,” J. Meteorol. Soc. Jpn. 76, 275–288 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited