OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 9 — Mar. 20, 1999
  • pp: 1648–1656

Refractive-index structure parameter in the planetary boundary layer: comparison of measurements taken with a 10.6-µm coherent lidar, a 0.9-µm scintillometer, and in situ sensors

Philippe Drobinski, Alain M. Dabas, Patricia Delville, Pierre H. Flamant, Jacques Pelon, and R. Michael Hardesty  »View Author Affiliations


Applied Optics, Vol. 38, Issue 9, pp. 1648-1656 (1999)
http://dx.doi.org/10.1364/AO.38.001648


View Full Text Article

Enhanced HTML    Acrobat PDF (238 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical technique is described that determines the path-averaged value of a refractive-index structure parameter at 10.6 µm by use of a pulsed coherent CO2 lidar in direct detection and hard-target returns. The lidar measurements are compared with measurements taken by a 0.9-µm scintillometer and temperature probe (with humidity corrections). The experimental results show good agreement for C n 2 ≥ 10-14 m-2/3. With respect to practical applications the new technique permits C n 2 lidar measurements in a neutral meteorological situation to an unstably stratified convective boundary layer over long ranges (1 km or more).

© 1999 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.7060) Atmospheric and oceanic optics : Turbulence
(030.1640) Coherence and statistical optics : Coherence
(030.6140) Coherence and statistical optics : Speckle
(120.5710) Instrumentation, measurement, and metrology : Refraction

History
Original Manuscript: August 21, 1998
Revised Manuscript: November 16, 1998
Published: March 20, 1999

Citation
Philippe Drobinski, Alain M. Dabas, Patricia Delville, Pierre H. Flamant, Jacques Pelon, and R. Michael Hardesty, "Refractive-index structure parameter in the planetary boundary layer: comparison of measurements taken with a 10.6-µm coherent lidar, a 0.9-µm scintillometer, and in situ sensors," Appl. Opt. 38, 1648-1656 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-9-1648


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Hill, S. F. Clifford, R. S. Lawrence, “Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity, and pressure fluctuations,” J. Opt. Soc. Am. 70, 1192–1205 (1980). [CrossRef]
  2. E. L. Andreas, “Two-wavelength method of measuring path-averaged turbulent surface heat fluxes,” J. Atmos. Oceanic Technol. 6, 280–292 (1989). [CrossRef]
  3. M. J. Post, W. D. Neff, “Doppler lidar measurements of winds in a narrow mountain valley,” Bull. Am. Meteorol. Soc. 67, 274–281 (1986). [CrossRef]
  4. P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler lidar observations of a downslope windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988). [CrossRef]
  5. W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989). [CrossRef]
  6. R. M. Banta, L. D. Olivier, D. H. Levinson, “Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar,” J. Atmos. Sci. 50, 3959–3982 (1993). [CrossRef]
  7. R. M. Banta, L. D. Olivier, W. D. Neff, D. H. Levinson, D. Ruffieux, “Influence of canyon-induced flows on flow and dispersion over adjacent plains,” Theor. Appl. Climatol. 52, 27–42 (1995). [CrossRef]
  8. R. M. Banta, L. D. Olivier, P. H. Gudiksen, R. Lange, “Implications of small-scale flow features to modeling dispersion over complex terrain,” J. Appl. Meteorol. 35, 330–342 (1996). [CrossRef]
  9. R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997). [CrossRef]
  10. P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary Layer Meteorol. 88, 343–361 (1998). [CrossRef]
  11. P. Delville, X. Favreau, C. Loth, P. H. Flamant, P. Salamitou, “Assessment of heterodyne efficiency for coherent lidar applications,” in Proceedings of Ninth Conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 135–138.
  12. A. Dabas, P. H. Flamant, P. Salamitou, “Characterization of pulsed coherent Doppler lidar with the speckle effect,” Appl. Opt. 33, 6524–6532 (1994). [CrossRef] [PubMed]
  13. G. M. Ancellet, R. T. Menzies, “Atmospheric correlation-time measurements and effects on coherent Doppler lidar,” J. Opt. Soc. Am. A 4, 367–373 (1987). [CrossRef]
  14. N. Sugimoto, K. P. Chan, D. K. Killinger, “Optimal heterodyne detector array size for 1-µm coherent lidar propagation through atmospheric turbulence,” Appl. Opt. 30, 2609–2616 (1991). [CrossRef] [PubMed]
  15. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 9–75.
  16. R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991). [CrossRef] [PubMed]
  17. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Keter, Jerusalem, 1971).
  18. H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979). [CrossRef]
  19. S. F. Clifford, S. Wandzura, “Monostatic heterodyne lidar performance: the effect of the turbulent atmosphere,” Appl. Opt. 20, 514–516 (1981). [CrossRef] [PubMed]
  20. B. J. Rye, “Refractive-turbulence contribution to incoherent backscatter heterodyne lidar returns,” J. Opt. Soc. Am. 71, 687–691 (1981). [CrossRef]
  21. J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Moment-equation and path-integral techniques for wave propagation in random media,” J. Math. Phys. 27, 171–177 (1986). [CrossRef]
  22. J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the fourth moment of waves propagating in random media,” Radio Sci. 21, 929–948 (1986). [CrossRef]
  23. R. G. Frehlich, “Space–time fourth moment of waves propagating in random media,” Radio Sci. 22, 481–490 (1987). [CrossRef]
  24. Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of pulsed coherent lidars. 1: Theory; 2: Applications,” Appl. Opt. 29, 4111–4132 (1990). [CrossRef] [PubMed]
  25. P. Salamitou, F. Darde, P. H. Flamant, “A semianalytic approach for coherent laser radar system efficiency, the nearest Gaussian approximation,” J. Mod. Opt. 41, 2101–2113 (1994). [CrossRef]
  26. G. R. Ochs, W. D. Cartwright, “An optical device for path-averaged measurements of Cn2,” in Atmospheric Transmission, R. W. Fenn, ed., Proc. SPIE277, 2–5 (1981). [CrossRef]
  27. F. C. Medeiros, D. A. R. Jayasuriya, R. S. Cole, C. G. Helmis, D. N. Asimakopulos, “Correlated humidity and temperature measurements in the urban atmospheric boundary layer,” Meteorol. Atmos. Phys. 39, 197–202 (1988). [CrossRef]
  28. J. C. Kaimal, J. C. Wyngaard, Y. Izumi, O. R. Coté, “Spectral characteristics of surface-layer turbulence,” Q. J. R. Meteorol. Soc. 98, 563–589 (1972). [CrossRef]
  29. J. C. Wyngaard, M. A. LeMone, “Behavior of the refractive-index structure parameter in the entraining convective boundary layer,” J. Atmos. Sci. 37, 1573–1585 (1980). [CrossRef]
  30. W. Kohsiek, “A comparison between line-averaged observation of Cn2 from scintillation of a CO2 laser beam and time-averaged in-situ observations,” J. Climate Appl. Meteorol. 24, 1099–1103 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited