## Optical electromagnetic vector-field modeling for the accurate analysis of finite diffractive structures of high complexity

Applied Optics, Vol. 38, Issue 9, pp. 1668-1676 (1999)

http://dx.doi.org/10.1364/AO.38.001668

Enhanced HTML Acrobat PDF (541 KB)

### Abstract

An electromagnetic vector-field model for design of optical components based on the finite-difference time-domain method and radiation integrals is presented. Its ability to predict the optical electromagnetic dynamics in structures with complex material distributions is demonstrated. Theoretical and numerical investigations of finite-length surface-relief structures embedded in polymer dielectric waveguiding materials are presented. The importance of several geometric parameter dependencies is indicated as far-field power distributions are rearranged between diffraction orders. The influences of the variation in grating period, modulation depth, length, and profile are investigated.

© 1999 Optical Society of America

**OCIS Codes**

(050.1940) Diffraction and gratings : Diffraction

(130.3120) Integrated optics : Integrated optics devices

(260.1960) Physical optics : Diffraction theory

(260.2110) Physical optics : Electromagnetic optics

**History**

Original Manuscript: March 3, 1998

Revised Manuscript: October 7, 1998

Published: March 20, 1999

**Citation**

Kim H. Dridi and Anders Bjarklev, "Optical electromagnetic vector-field modeling for the accurate analysis of finite diffractive structures of high complexity," Appl. Opt. **38**, 1668-1676 (1999)

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-9-1668

Sort: Year | Journal | Reset

### References

- T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985). [CrossRef]
- M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982). [CrossRef]
- H. Nishihara, S. Ura, T. Suhara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).
- L. Lading, C. D. Hansen, E. Rasmussen, “Surface light scattering: integrated technology and signal processing,” Appl. Opt. 36, 7593–7600 (1997). [CrossRef]
- R. W. Ziolkowski, “The incorporation of microscopic material models into the FDTD approach for ultrafast optical pulse simulations,” IEEE Trans. Antennas Propag. 45, 375–391 (1997). [CrossRef]
- M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996). [CrossRef]
- D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997). [CrossRef]
- P. G. Dinesen, J. S. Hesthaven, J. P. Lynov, L. Lading, “Pseudo-spectral method for the analysis of diffractive optical elements,” submitted to J. Opt. Soc. Am. A.
- M. G. Moharam, D. A. Pommet, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994). [CrossRef]
- J. J. H. Wang, Generalized Moment Methods in Electromagnetics: Formulation and Computer Solution of Integral Equations (Wiley, New York, 1991).
- J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 1993).
- B. Yang, D. Gottlieb, J. S. Hesthaven, “Spectral simulations of electromagnetic wave scattering,” J. Comput. Phys. 134, 216–230 (1997). [CrossRef]
- K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
- A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1995).
- J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, R. M. Joseph, A. Taflove, C. W. Tu, S. T. Ho, “Nanofabrication of 1-D photonic bandgap structures along a photonic wire,” IEEE Photon. Technol. Lett. 8, 491–493 (1996). [CrossRef]
- H. Y. D. Yang, “Finite difference analysis of 2-D photonic crystals,” IEEE Trans. Microwave Theory Tech. 44, 2688–2695 (1996). [CrossRef]
- B. Yang, D. Gottlieb, J. S. Hesthaven, “On the use of PML ABC’s in spectral time-domain simulations of electromagnetic scattering,” in 13th Annual Review of Progress in Applied Computational Electromagnetics at the Naval Postgraduate School, A. Kishk, A. Glisson, eds., conference proceedings of the Applied Computational Electromagnetics Society (U. Mississippi Press, Jackson, Miss., 1997), pp. 926–933.
- S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics, 3rd ed. (Wiley, New York, 1993).
- T. Tamir, “Beam and waveguide couplers,” in Integrated Optics, 2nd. ed., T. Tamir, ed. (Springer-Verlag, New York, 1979), pp. 309–327.

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

### Figures

Fig. 1 |
Fig. 2 |
Fig. 3 |

Fig. 4 |
Fig. 5 |
Fig. 6 |

Fig. 7 |
Fig. 8 |
Fig. 9 |

Fig. 10 |
Fig. 11 |
Fig. 12 |

Fig. 13 |
||

« Previous Article | Next Article »

OSA is a member of CrossRef.