OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 9 — Mar. 20, 1999
  • pp: 1692–1699

Flattopped tunable wavelength-division-multiplexer filter design

Miao Yang and Claire Gu  »View Author Affiliations

Applied Optics, Vol. 38, Issue 9, pp. 1692-1699 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (351 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present what is to our knowledge the first design of a tunable optical filter with a flattopped passband. The filter consists of a Fabry–Perot etalon with multiple reflection gratings as dielectric mirrors. Wavelength tunability is achieved by modulation of the refractive indices of the cavity and the dielectric mirrors. Specifically, a filter with a 1-nm linewidth and a 40-nm wavelength-tuning range is designed for applications in wavelength-division-multiplexing (WDM) optical fiber communication systems. We also discuss several factors, including absorption and variations of other design parameters, that may affect the performance of the filter.

© 1999 Optical Society of America

OCIS Codes
(050.1590) Diffraction and gratings : Chirping
(050.2230) Diffraction and gratings : Fabry-Perot
(050.2770) Diffraction and gratings : Gratings
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4230) Fiber optics and optical communications : Multiplexing
(060.4510) Fiber optics and optical communications : Optical communications

Original Manuscript: March 31, 1998
Revised Manuscript: October 29, 1998
Published: March 20, 1999

Miao Yang and Claire Gu, "Flattopped tunable wavelength-division-multiplexer filter design," Appl. Opt. 38, 1692-1699 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. H. Lissberger, A. K. Roy, D. J. McCartney, “Narrow band position-tuned multilayer interference filter for use in single-mode-fiber systems,” Electron. Lett. 21, 798–799 (1985). [CrossRef]
  2. J. Spigulis, J. Lazdins, “Compact dielectric reflective elements. II. Multichannel filter of closely spaced spectral bands,” Appl. Opt. 33, 6638–6641 (1994). [CrossRef] [PubMed]
  3. A. Frenkel, C. Lin, “Inline tunable etalon filter for optical channel selection in high density wavelength division multiplexed fiber systems,” Electron. Lett. 24, 159–161 (1988). [CrossRef]
  4. Y. Fujii, J. Minowa, “Wavelength tunability of electrooptically tuned Fabry–Perot filters,” Appl. Opt. 30, 1017–1018 (1991). [CrossRef] [PubMed]
  5. K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division-multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993). [CrossRef]
  6. D. A. Smith, J. J. Johnson, “Sidelobe suppression in an acousto-optic filter with a raised-cosine interaction strength,” Appl. Phys. Lett. 61, 1025–1027 (1992). [CrossRef]
  7. I. R. Croston, A. D. Carr, N. J. Parson, S. N. Radcliffe, L. J. St. Ville, “Lithium niobate electro-optic tunable filter with high sidelobe suppression,” Electron. Lett. 29, 157–159 (1993). [CrossRef]
  8. H. Toba, K. Oda, K. Nakanishi, N. Shibata, K. Nosu, N. Takato, M. Fukuda, “A 100-channel optical FDM transmission/distribution at 622 Mb/s over 50 km,” J. Lightwave Technol. 8, 1396–1401 (1990). [CrossRef]
  9. T. Numai, “1.5 µm phase-shift-controlled distributed feedback wavelength tunable optical filter,” IEEE J. Quantum Electron. 28, 1513–1519 (1992). [CrossRef]
  10. Z. M. Chuang, M. J. Mondry, D. B. Young, D. A. Cohen, L. A. Coldren, “Photonic integrated tunable receivers with optical preamplifiers for direct detection,” Appl. Phys. Lett. 63, 880–882 (1993). [CrossRef]
  11. J. S. Patel, M. A. Saifi, D. W. Berreman, Chinlon Lin, N. Andreadakis, S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot etalon,” Appl. Phys. Lett. 57, 1718–1720 (1990). [CrossRef]
  12. M. A. Scobey, D. E. Spock, “Passive DWDM components using MicroPlasma optical interference filters,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1996 Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 242–243.
  13. M. A. Scobey, W. J. Lekki, T. W. Geyer, “Filters create thermally stable, passive multiplexers,” Laser Focus World 33(3) , 111–112, 114, 116 (1997).
  14. See, for example, P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993), p. 57.
  15. H. Ishio, J. Minowa, K. Nosu, “Review and status of wavelength-division-multiplexing technology and its application,” J. Lightwave Technol. 2, 448–463 (1984). [CrossRef]
  16. H. Ono, N. Kawatsuki, “Orientational holographic grating observed in liquid crystals sandwiched with photoconductive polymer films,” Appl. Phys. Lett. 71, 1162–1164 (1997). [CrossRef]
  17. I. C. Khoo, H. Li, Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19, 1723–1725 (1994). [CrossRef] [PubMed]
  18. I. C. Khoo, “Orientational photorefractive effects in nematic liquid crystal films,” IEEE J. Quantum Electron. 32, 525–534 (1996). [CrossRef]
  19. A. Katzir, A. C. Livanos, J. B. Shellan, A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. QE-13, 296–304 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited