Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Measurements of OH radical concentration in combustion environments by wavelength-modulation spectroscopy with a 1.55-µm distributed-feedback diode laser

Not Accessible

Your library or personal account may give you access

Abstract

Wavelength-modulation spectroscopy with a standard commercial 1.55-µm distributed-feedback diode laser was applied to in situ quantitative measurements of OH radical concentration in combustion environments. The second-harmonic (2f) signal was generated from absorption by the P11.5 (ν′, ν") = (2, 0) overtone vibrational transition of OH at 6421.354 cm-1. The absorption occurred in the postflame region of a two-dimensional laminar counterflow burner (Tsuji burner) with a 60-mm line-of-sight path length. The postflame region lies between propane–air premixed twin flames stabilized in the Tsuji burner at various equivalence ratios (ϕ = 0.65–1.0). The OH concentrations were determined by least-squares fitting of theoretical 2f line shapes to the experimental counterparts. The measured OH concentrations were in general agreement with adiabatic chemical equilibrium predictions. The lower limit of OH detectivity by multiline deconvolution was limited by ubiquitous unidentified high-temperature H2O transitions.

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
In situ combustion measurements of CO with diode-laser absorption near 2.3 µm

Jian Wang, Mikhail Maiorov, Douglas S. Baer, Dmitri Z. Garbuzov, John C. Connolly, and Ronald K. Hanson
Appl. Opt. 39(30) 5579-5589 (2000)

In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 µm

Michael E. Webber, Suhong Kim, Scott T. Sanders, Douglas S. Baer, Ronald K. Hanson, and Yuji Ikeda
Appl. Opt. 40(6) 821-828 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved