OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 9 — Mar. 20, 1999
  • pp: 1752–1758

Effect of fabrication errors in channel waveguide Bragg gratings

Giuseppe Coppola, Andrea Irace, Antonello Cutolo, and Mario Iodice  »View Author Affiliations


Applied Optics, Vol. 38, Issue 9, pp. 1752-1758 (1999)
http://dx.doi.org/10.1364/AO.38.001752


View Full Text Article

Enhanced HTML    Acrobat PDF (235 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spectral performances of nonideal rectangular Bragg gratings, integrated in a rib waveguide, are analyzed by a multilayer approach based on the effective-index method. The effects of errors on the photolithographic definition of the grating, that is, period and shape, and of errors on the control of etching depth are investigated. Also the influence of the stitching error, which is unavoidable when the grating is realized by means of electron-beam photolithography, is addressed. A novel analytical approach that extends coupled-mode theory to the analysis of real gratings is also presented.

© 1999 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.0130) Integrated optics : Integrated optics

History
Original Manuscript: March 25, 1998
Revised Manuscript: September 21, 1998
Published: March 20, 1999

Citation
Giuseppe Coppola, Andrea Irace, Antonello Cutolo, and Mario Iodice, "Effect of fabrication errors in channel waveguide Bragg gratings," Appl. Opt. 38, 1752-1758 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-9-1752


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Eisert, G. Bacher, N. Mais, J. P. Reithmaier, A. Forchel, B. Jobst, D. Hommel, “First order gain and index coupled distributed feedback lasers in ZnSe structures with finely tuned emission wavelengths,” Appl. Phys. Lett. 68, 599–601 (1996). [CrossRef]
  2. T. F. Krauss, R. M. De La Rue, P. J. R. Laybourn, B. Vögele, C. R. Stanley, “Efficient semiconductor ring lasers made by a simple self-aligned fabrication process,” IEEE J. Sel. Top. Quantum Electron. 1, 757–760 (1995). [CrossRef]
  3. M. Fallahi, M. Dion, F. Chatenoud, I. M. Temoleton, R. Barber, “High temperature operation of circular grating surface emitting DBR lasers fabricated on an InGaAs/GaAs structure,” IEEE Photon. Technol. Lett. 6, 326–329 (1994). [CrossRef]
  4. S. L. McCall, P. M. Platzman, “An optimized π/2 distributed feedback laser,” IEEE J. Quantum Electron. QE-21, 1899–1904 (1985). [CrossRef]
  5. A. Cutolo, M. Iodice, A. Irace, P. Spirito, L. Zeni, “An electrically controlled Bragg reflector integrated in a silicon rib SOI waveguide,” Appl. Phys. Lett. 71, 199–201 (1997). [CrossRef]
  6. M. Y. Liu, S. Y. Chou, “High modulation depth and short cavity length silicon Fabry–Perot modulator with two Bragg reflectors,” Appl. Phys. Lett. 68, 170–172 (1996). [CrossRef]
  7. M. Okai, I. F. Lealman, J. Rivers, C. Dix, M. J. Robertson, “In line Fabry–Perot optical waveguide filter with quasi-chirped grating,” Electron. Lett. 32, 108–109 (1996). [CrossRef]
  8. H. J. Lee, N. A. Olsson, H. Henry, R. F. Kazarinov, K. J. Orlowski, “Narrowband Bragg reflector filter at 1.52 µm,” Appl. Opt. 27, 211–213 (1988). [CrossRef] [PubMed]
  9. J. Martin, F. Ouellette, “Novel writing technique of long highly reflective in-fiber gratings,” Electron. Lett. 30, 811–812 (1994). [CrossRef]
  10. C. H. Lin, Z. H. Zhu, Y. H. Lo, “New grating fabrication technology for optoelectronic devices: cascaded self-induced holography,” Appl. Phys. Lett. 67, 3072–3074 (1995). [CrossRef]
  11. P. Unger, V. Boegli, P. Buchmann, R. Germann, “High resolution electron-beam lithography for fabricating visible semiconductor lasers with curved mirrors and integrated holograms,” Microelectron. Eng. 23, 461–464 (1994). [CrossRef]
  12. T. Kjellberg, S. Nilsson, T. Klinga, B. Broberg, R. Schatz, “Investigation on the spectral characteristics of DFB lasers with different grating configurations made by electron-beam lithography,” J. Lightwave Technol. 11, 1405–1415 (1993). [CrossRef]
  13. T. Kjellberg, R. Schatz, “The effect of stitching errors on the spectral characteristics of DFB lasers fabricated using electron-beam lithography,” J. Lightwave Technol. 10, 1256–1266 (1992). [CrossRef]
  14. V. V. Wong, J. Ferrara, J. N. Damask, T. E. Murphy, H. I. Smith, H. A. Haus, “Distributed Bragg grating integrated-optical filters: synthesis and fabrication,” J. Vac. Sci. Technol. B 13, 2859–2864 (1995). [CrossRef]
  15. A. Basu, J. M. Ballantyne, “Random fluctuations in first-order waveguide grating filters,” Appl. Opt. 18, 2575–2579 (1979). [CrossRef] [PubMed]
  16. A. Yariv, “Coupled mode theory for guided wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973). [CrossRef]
  17. A. Hardy, “Exact derivation of coupling coefficients in corrugated waveguides with rectangular tooth shape,” IEEE J. Quantum Electron. QE-20, 1132–1139 (1984). [CrossRef]
  18. M. J. Li, S. I. Najafi, “Polarization dependence of grating assisted waveguide Bragg reflectors,” Appl. Opt. 32, 4517–4521 (1993). [CrossRef] [PubMed]
  19. K. A. Winick, “Effective-index method and coupled theory for almost-periodic waveguide gratings: a comparison,” Appl. Opt. 31, 757–764 (1992). [CrossRef] [PubMed]
  20. P. Blair, M. R. Taghizadeh, W. Parkers, C. D. W. Wilkinson, “High-efficiency binary fan-out gratings by modulation of high-frequency carrier grating,” Appl. Opt. 34, 2406–2413 (1995). [CrossRef] [PubMed]
  21. P. Verly, R. Tremblay, J. W. Y. Lit, “Application of the effective-index method to the study of distributed feedback in corrugated waveguides. TE polarization,” J. Opt. Soc. Am. 70, 964–968 (1980). [CrossRef]
  22. P. Verly, R. Tremblay, J. W. Y. Lit, “Application of the effective-index method to the study of distributed feedback in corrugated waveguides. TM polarization,” J. Opt. Soc. Am. 70, 1218–1221 (1980). [CrossRef]
  23. R. W. Gruhlke, D. G. Hall, “Comparison of two approaches to the waveguide scattering problem: TM polarization,” Appl. Opt. 23, 127–133 (1984). [CrossRef] [PubMed]
  24. W. Streifer, D. R. Scrifres, R. D. Burnham, “TM-mode coupling coefficients in guided-wave distributed feedback lasers,” IEEE J. Quantum Electron. QE-12, 74–78 (1976). [CrossRef]
  25. W. Streifer, D. R. Scrifres, R. D. Burnham, “Coupling coefficients for distributed feedback single and double heterostructure diode lasers,” IEEE J. Quantum Electron. QE-11, 867–873 (1975). [CrossRef]
  26. G. Weitman, A. Hardy, “Reduction of the coupling coefficients for distributed Bragg reflectors in corrugated narrow rib waveguide,” IEE Proc. Optoelectron. 144, 101–103 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited