OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 9 — Mar. 20, 1999
  • pp: 1823–1832

Measurement of the lidar ratio for atmospheric aerosols with a 180° backscatter nephelometer

Sarah J. Doherty, Theodore L. Anderson, and Robert J. Charlson  »View Author Affiliations


Applied Optics, Vol. 38, Issue 9, pp. 1823-1832 (1999)
http://dx.doi.org/10.1364/AO.38.001823


View Full Text Article

Enhanced HTML    Acrobat PDF (215 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser radar (lidar) can be used to estimate atmospheric extinction coefficients that are due to aerosols if the ratio between optical extinction and 180° backscatter (the lidar ratio) at the laser wavelength is known or if Raman or high spectral resolution data are available. Most lidar instruments, however, do not have Raman or high spectral resolution capability, which makes knowledge of the lidar ratio essential. We have modified an integrating nephelometer, which measures the scattering component of light extinction, by addition of a backward-pointing laser light source such that the detected light corresponds to integrated scattering over 176–178° at a common lidar wavelength of 532 nm. Mie calculations indicate that the detected quantity is an excellent proxy for 180° backscatter. When combined with existing techniques for measuring total scattering and absorption by particles, the new device permits a direct determination of the lidar ratio. A four-point calibration, run by filling the enclosed sample volume with particle-free gases of a known scattering coefficient, indicates a linear response and calibration reproducibility to within 4%. The instrument has a detection limit of 1.5 × 10-7 m-1 sr-1 (∼10% of Rayleigh scattering by air at STP) for a 5-min average and is suitable for ground and mobile/airborne surveys. Initial field measurements yielded a lidar ratio of ∼20 for marine aerosols and ∼60–70 for continental aerosols, with an uncertainty of ∼20%.

© 1999 Optical Society of America

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(280.1100) Remote sensing and sensors : Aerosol detection
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.3640) Remote sensing and sensors : Lidar
(290.1350) Scattering : Backscattering

History
Original Manuscript: June 1, 1998
Revised Manuscript: October 26, 1998
Published: March 20, 1999

Citation
Sarah J. Doherty, Theodore L. Anderson, and Robert J. Charlson, "Measurement of the lidar ratio for atmospheric aerosols with a 180° backscatter nephelometer," Appl. Opt. 38, 1823-1832 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-9-1823


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Seinfeld, R. J. Charlson, P. A. Durkee, D. Hegg, B. J. Huebert, J. Kiehl, M. P. McCormick, J. A. Ogren, J. E. Penner, V. Ramaswamy, W. G. Slinn, eds., Aerosol Radiative Forcing and Climate Change, National Research Council (National Academy Press, Washington, D.C., 1996).
  2. Instrument calibration relates detected photon counts to backscatter. Lidar calibration depends on factors such as pulse strength, detector gain, and system geometry (see Ref. 12).
  3. The lidar ratio is defined here such that K = 8π/3 for Rayleigh scattering.
  4. M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the lidar in-space technology experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993). [CrossRef]
  5. B. E. Anderson, W. B. Grant, G. L. Gregory, E. V. Browell, J. E. Collins, G. W. Sachse, D. R. Bagwell, C. H. Hudgins, D. R. Blake, N. J. Blake, “Aerosols from biomass burning over the tropical South Atlantic region: distributions and impacts,” J. Geophys. Res. 101, 24,117–24,137 (1996). [CrossRef]
  6. E. V. Browell, C. F. Butler, S. A. Kooi, M. A. Fenn, R. C. Harriss, G. L. Gregory, “Large-scale variability of ozone and aerosols in the summertime Arctic and Sub-Arctic troposphere,” J. Geophys. Res. 97, 16,433–16,450 (1992). [CrossRef]
  7. E. V. Browell, M. A. Fenn, C. F. Butler, W. B. Grant, R. C. Harriss, M. C. Shipham, “Ozone and aerosol distributions in the summertime troposphere over Canada,” J. Geophys. Res. 99, 1739–1755 (1994). [CrossRef]
  8. E. V. Browell, G. L. Gregory, R. C. Harriss, V. W. J. H. Kirchhoff, “Ozone and aerosol distributions over the Amazon Basin during the wet season,” J. Geophys. Res. 95, 16,887–16,901 (1990). [CrossRef]
  9. B. T. N. Evans, “Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidar,” Appl. Opt. 27, 3299–3305 (1988). [CrossRef] [PubMed]
  10. S. A. Kwon, Y. Iwasaka, T. Shibata, T. Sakai, “Vertical distribution of atmospheric particles and water vapor densities in the free troposphere: lidar measurement in spring and summer in Nagoya, Japan,” Atmos. Environ. 31, 1459–1465 (1997). [CrossRef]
  11. P. B. Russell, B. M. Morley, “Orbiting lidar simulations. 2: Density, temperature, aerosol, and cloud measurements by a wavelength-combining technique,” Appl. Opt. 21, 1554–1563 (1982). [CrossRef] [PubMed]
  12. R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Dusterdiek, “Lidar, nephelometer, and in situ aerosol experiments in southern Ontario,” J. Geophys. Res. 101(D14) , 19,199–19,209 (1996). [CrossRef]
  13. T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996). [CrossRef]
  14. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  15. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995). [CrossRef] [PubMed]
  16. T. L. Anderson, J. A. Ogren, “Determining aerosol radiative properties using the TSI 3563 integrating nephelometer,” Aerosol Sci. Technol. 29, 57–69 (1998). [CrossRef]
  17. A. T. Young, “Revised depolarization corrections for atmospheric extinction,” Appl. Opt. 19, 3427–3428 (1980). [CrossRef] [PubMed]
  18. J. M. Rosen, N. T. Kjome, “Backscattersonde: a new instrument for atmospheric aerosol research,” Appl. Opt. 30, 1552–1561 (1991). [CrossRef] [PubMed]
  19. J. M. Rosen, R. G. Pinnick, D. M. Garvey, “Measurement of extinction-to-backscatter ratio for near-surface aerosols,” J. Geophys. Res. 102, 6017–6024 (1997). [CrossRef]
  20. J. M. Rosen, T. Kjome, J. B. Liley, “Tropospheric aerosol backscatter at a midlatitude site in the northern and southern hemispheres,” J. Geophys. Res. 102, 21,329–21,339 (1997). [CrossRef]
  21. J. M. Rosen, T. N. Kjome, “Balloon-borne measurements of the aerosol extinction-to-backscatter ratio,” J. Geophys. Res. 102, 11,165–11,169 (1997). [CrossRef]
  22. A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Appl. Phys. B 55, 18–28 (1992). [CrossRef]
  23. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Opt. Lett. 15, 746–748 (1990). [CrossRef] [PubMed]
  24. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992). [CrossRef] [PubMed]
  25. A. Ansmann, I. Mattis, U. Wandinger, F. Wagner, “Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass and surface area over center Europe at 53.4° N,” J. Atmos. Sci. 54, 2630–2641 (1997). [CrossRef]
  26. D. Muller, U. Wandinger, D. Althausen, I. Mattis, A. Ansmann, “Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths,” Appl. Opt. 37, 2260–2263 (1998). [CrossRef]
  27. P. von der Gathen, “Aerosol extinction and backscatter profiles by means of a multiwavelength Raman lidar: a new method without a priori assumptions,” Appl. Opt. 34, 463–466 (1995). [CrossRef] [PubMed]
  28. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering: 1. Methods and comparisons,” J. Geophys. Res. 103, 19,663–19,672 (1998). [CrossRef]
  29. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, M. Poellot, Y. J. Kaufman, “Raman lidar measurements of aerosol extinction and backscattering: 2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements,” J. Geophys. Res. 103(D16) , 19,673–19,689 (1998). [CrossRef]
  30. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983). [CrossRef] [PubMed]
  31. J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis,” Appl. Opt. 22, 3725–3732 (1983). [CrossRef] [PubMed]
  32. C. J. Grund, E. W. Eloranta, “University of Wisconsin high spectral resolution lidar,” Opt. Eng. 30(1) , 6–12 (1991). [CrossRef]
  33. P. Piironen, E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994). [CrossRef] [PubMed]
  34. T. Murayama, M. Furushima, A. Oda, N. Iwasaka, “Aerosol optical properties in the urban mixing layer studies by polarization lidar with meteorological data,” In Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, New York, 1997), pp. 19–22. [CrossRef]
  35. T. Takamura, Y. Sasano, “Aerosol optical properties inferred from simultaneous lidar, aerosol-counter and sunphotometer measurements,” J. Meteorol. Soc. Jpn. 68(6) , 731–739 (1990).
  36. T. Takamura, Y. Sasano, T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994). [CrossRef] [PubMed]
  37. T. Hayasaka, Y. Meguro, Y. Sasano, T. Takamura, “Stratification and size distribution of aerosols retrieved from simultaneous measurements with lidar, a sunphotometer, and an aureolemeter,” Appl. Opt. 37, 961–970 (1998). [CrossRef]
  38. H. Yoshiyama, A. Ohi, K. Ohta, “Derivation of the aerosol size distribution from a bistatic system of a multiwavelength laser with the singular value decomposition method,” Appl. Opt. 35, 2642–2648 (1996). [CrossRef] [PubMed]
  39. G. Pandithurai, P. C. S. Devara, P. E. Raj, S. Sharma, “Aerosol size distribution and refractive index from bistatic lidar angular scattering measurements in the surface layer,” Remote Sensing Environ. 56, 87–96 (1996). [CrossRef]
  40. S. Yang, W. Cotton, T. Jensen, “Feasibility of retrieving aerosol concentration in the atmospheric boundary layer using multitime lidar returns and visual range,” J. Atmos. Oceanic Technol. 14, 1064–1078 (1997). [CrossRef]
  41. G. A. D’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).
  42. H. E. Jorgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355–361 (1997). [CrossRef]
  43. S. A. Young, D. R. Cutten, M. J. Lynch, J. E. Davies, “Lidar-derived variations in the backscatter-to-extinction ratio in Southern Hemisphere coastal maritime aerosols,” Atmos. Environ. 27A, 1541–1551 (1993). [CrossRef]
  44. J. Zhang, H. Hu, “Lidar calibration: a new method,” Appl. Opt. 36, 1235–1238 (1997). [CrossRef] [PubMed]
  45. T. C. Bond, T. L. Anderson, D. Campbell, “Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols,” Aerosol Sci. Technol. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited