OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 9 — Mar. 20, 1999
  • pp: 1841–1849

Narrow-band, narrow-field-of-view Raman lidar with combined day and night capability for tropospheric water-vapor profile measurements

Scott E. Bisson, John E. M. Goldsmith, and Mark G. Mitchell  »View Author Affiliations

Applied Optics, Vol. 38, Issue 9, pp. 1841-1849 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (364 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a high-performance Raman lidar system with combined day and night capability for tropospheric water-vapor profile measurements. The system incorporates high-performance UV interference filters and a narrow-band, dual-field-of-view receiver for rejection of background sunlight. Daytime performance has been demonstrated up to 5 km with 150-m vertical and 5-min temporal averaging. The nighttime performance is significantly better with measurements routinely extending from 10 to 12 km with 75-m range resolution and a 5-min temporal average. We describe design issues for daytime operation and a novel daytime calibration technique.

© 1999 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.6450) Spectroscopy : Spectroscopy, Raman

Original Manuscript: July 31, 1998
Revised Manuscript: November 13, 1998
Published: March 20, 1999

Scott E. Bisson, John E. M. Goldsmith, and Mark G. Mitchell, "Narrow-band, narrow-field-of-view Raman lidar with combined day and night capability for tropospheric water-vapor profile measurements," Appl. Opt. 38, 1841-1849 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992). [CrossRef] [PubMed]
  2. J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994). [CrossRef]
  3. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 42, 1–11 (1992).
  4. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998). [CrossRef]
  5. D. Renaut, R. Capitini, “Boundary-layer water vapor probing with a solar blind Raman lidar: validations, meteorological observations and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988). [CrossRef]
  6. D. N. Whiteman, R. A. Ferrare, S. H. Melfi, K. D. Evans, “Solar blind Raman scattering measurements of water vapor using a KrF excimer laser,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 165–168.
  7. J. E. M. Goldsmith, R. A. Ferrare, “Performance modeling of daytime Raman lidar systems for profiling atmospheric water vapor,” in 16th International Laser Radar Conference, NASA Conference Pub. 3158, Part 2 (National Aeronautics and Space Administration, Washington, D.C., 1992), pp. 667–670.
  8. S. E. Bisson, “Parametric study of an excimer-pumped, nitrogen Raman shifter for lidar applications,” Appl. Opt. 34, 3406–3412 (1995). [CrossRef] [PubMed]
  9. J. Goldhar, W. R. Rapoport, J. R. Murray, “An injection-locked unstable resonator rare-gas halide discharge laser of narrow linewidth and high spatial quality,” IEEE J. Quantum Electron. 16, 235–240 (1980). [CrossRef]
  10. Barr Associates, Inc., 2 Lyberty Way, Westford, Mass. 01886.
  11. DSP Technology, Inc., 48500 Kato Road, Fremont, Calif. 94538-7338.
  12. E. P. Shettle, R. W. Fenn, “Models of the atmospheric aerosols and their optical properties,” in AGARD Conference Proceedings No. 183, (U.S. National Technical Information Service, Springfield, Va., 1975).
  13. E. P. Shettle, R. W. Fenn, “Models of the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  14. J. P. Thayer, N. B. Nielson, R. B. Kerr, J. Noto, “Rayleigh lidar observations during arctic summer conditions,” in Proceedings of the 1996 International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, Inc., New York, 1996), pp. 686–690. [CrossRef]
  15. J. P. Thayer, N. B. Nielson, R. E. Warren, C. J. Heinselman, J. Sohn, “Rayleigh lidar system for middle atmospheric research in the arctic,” Opt. Eng. 36, 2045–2061 (1997). [CrossRef]
  16. A. F. Bais, “Absolute spectral measurements of direct solar ultraviolet irradiance with a Brewer spectrophotometer,” Appl. Opt. 36, 5199–5204 (1997). [CrossRef] [PubMed]
  17. R. L. McKenzie, P. V. Johnston, M. Kotkamp, A. Bittar, J. D. Hamlin, “Solar ultraviolet spectroradiometry in New Zealand: instrumentation and sample results from 1990,” Appl. Opt. 31, 6501–6509 (1992). [CrossRef] [PubMed]
  18. H. W. Schrötter, H. W. Klöchner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, Vol. 11 of Topics in Current Physics, A. Weber, ed. (Springer-Verlag, Berlin, 1979), pp. 130–138.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited