OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 9 — Mar. 20, 1999
  • pp: 1859–1866

Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design

Jae Won Hahn, Yong Shim Yoo, Jae Yong Lee, Jae Wan Kim, and Hai-Woong Lee  »View Author Affiliations


Applied Optics, Vol. 38, Issue 9, pp. 1859-1866 (1999)
http://dx.doi.org/10.1364/AO.38.001859


View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For the efficient operation of a cavity ringdown spectroscopy (CRDS) system utilized with a continuous-wave (cw) laser, we numerically analyze the coupling efficiency of a cw laser to a ringdown cavity in terms of changes in the scanning rate, the laser linewidth, and the mirror reflectivity. We also demonstrate a new simple design for a CRDS system that can produce a CRDS signal with only a piezoelectric transducer (PZT), without the acousto-optic modulator that is usually adopted to switch off the cw laser beam that enters the cavity. Furthermore, we investigate the feasibility of the cw CRDS technique with a fast-scanning PZT by recording a CRDS spectrum of acetylene overtones. The detection sensitivity that corresponds to the noise-equivalent absorption is found to be ∼3 × 10-9/cm.

© 1999 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(300.0300) Spectroscopy : Spectroscopy
(300.6360) Spectroscopy : Spectroscopy, laser

History
Original Manuscript: September 21, 1998
Revised Manuscript: November 23, 1998
Published: March 20, 1999

Citation
Jae Won Hahn, Yong Shim Yoo, Jae Yong Lee, Jae Wan Kim, and Hai-Woong Lee, "Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design," Appl. Opt. 38, 1859-1866 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-9-1859


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. O’Keefe, D. A. G. Deacon, “Cavity ringdown optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  2. A. O’Keefe, J. J. Scherer, A. L. Cooksy, R. Sheeks, J. Heath, R. J. Saykally, “Cavity ringdown dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3,” Chem. Phys. Lett. 172, 214–218 (1990). [CrossRef]
  3. T. Yu, M. C. Lin, “Kinetics of phenyl radical reactions studied by the cavity-ringdown method,” J. Am. Chem. Soc. 115, 4371–4372 (1993). [CrossRef]
  4. K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994). [CrossRef]
  5. D. Romanini, K. K. Lehmann, “Cavity ringdown overtone spectroscopy of HCN, H13CN and HC15N,” J. Chem. Phys. 102, 633–642 (1995). [CrossRef]
  6. R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ringdown spectroscopy,” Rev. Sci. Instrum. 66, 2821–2827 (1995). [CrossRef]
  7. P. Zalicki, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995). [CrossRef]
  8. D. Romanini, K. K. Lehmann, “Calculation of the Herman–Wallis in Π–Σ vibrational overtone transitions in a linear molecule: comparison with HCN experimental results,” J. Chem. Phys. 105, 68–80 (1996). [CrossRef]
  9. E. H. Wahl, T. G. Owano, C. H. Kruger, P. Zalicki, Y. Ma, R. N. Zare, “Measurement of absolute CH3 concentration in a hot-filament reactor using cavity ringdown spectroscopy,” Diamond Related Mater. 5, 373–377 (1996). [CrossRef]
  10. L. Zhu, D. Kellis, C. Ding, “Photolysis of glyoxal at 193, 248, 308 and 351 nm,” Chem. Phys. Lett. 257, 487–491 (1996). [CrossRef]
  11. G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, A. M. Wodtke, “Coherent cavity ringdown spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994). [CrossRef]
  12. J. J. Scherer, D. J. Rakestraw, “Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,” Chem. Phys. Lett. 265, 169–176 (1997). [CrossRef]
  13. T. Etzkorn, J. Fitzer, S. Muris, J. Wolfrum, “Determination of absolute methyl- and hydroxyl-radical concentrations in a low pressure methane–oxygen flame,” Chem. Phys. Lett. 208, 307–310 (1993). [CrossRef]
  14. J. T. Hodges, J. P. Looney, R. D. van Zee, “Laser bandwidth effects in quantitative cavity ringdown spectroscopy,” Appl. Opt. 35, 4112–4116 (1996). [CrossRef] [PubMed]
  15. J. M. Herbelin, J. A. McKay, M. A. Kwok, R. H. Ueunten, D. S. Urevig, D. J. Spencer, D. J. Benard, “Sensitive measurement of photon lifetime and true reflectance in an optical cavity by a phase-shift method,” Appl. Opt. 19, 144–147 (1980). [CrossRef] [PubMed]
  16. D. Z. Anderson, J. C. Frisch, C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23, 1238–1245 (1984). [CrossRef] [PubMed]
  17. M. Billardon, M. E. Couprie, J. M. Ortega, M. Velghe, “Fabry–Perot effects in the exponential decay and phase shift reflectivity measurement methods,” Appl. Opt. 30, 344–351 (1991). [CrossRef] [PubMed]
  18. P. Zalicki, R. N. Zare, “Cavity ringdown spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995). [CrossRef]
  19. K. K. Lehmann, D. Romanini, “The superposition principle and cavity ringdown spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996). [CrossRef]
  20. J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ringdown cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,287 (1996). [CrossRef]
  21. J. Martin, B. A. Paldus, P. Zalicki, E. H. Wahl, T. G. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996). [CrossRef]
  22. D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “Cw cavity ringdown spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997). [CrossRef]
  23. D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ringdown spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997). [CrossRef]
  24. D. Romanini, A. A. Kachanov, F. Stoeckel, “Cavity ring-down spectroscopy: broadband absolute absorption measurements,” Chem. Phys. Lett. 270, 546–550 (1997). [CrossRef]
  25. B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998). [CrossRef]
  26. Z. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991). [CrossRef]
  27. Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993). [CrossRef]
  28. K. An, C. Yang, R. R. Dasari, M. S. Feld, “Cavity ringdown technique and its application to the measurement of ultraslow velocities,” Opt. Lett. 20, 1068–1070 (1995). [CrossRef]
  29. J. Poirson, F. Bretenaker, M. Vallet, A. L. Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesse,” J. Opt. Soc. Am. B 14, 2811–2817 (1997). [CrossRef]
  30. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991). [CrossRef]
  31. D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited