OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 1 — Jan. 1, 2000
  • pp: 141–148

Simple recurrence matrix relations for multilayer anisotropic thin films

E. Cojocaru  »View Author Affiliations

Applied Optics, Vol. 39, Issue 1, pp. 141-148 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (152 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Generalized Abelès relations for one anisotropic thin film [CojocaruE., Appl. Opt. 36, 2825–2829 (1997)] are developed for light propagation from an isotropic medium of incidence (with refractive index n0) within a multilayer anisotropic thin film coated onto an anisotropic substrate. An immersion model is used for which it is assumed that each layer is imaginatively embedded between isotropic gaps of zero thickness and refractive index n0. This model leads to simple expressions for the resultant transmitted and reflected electric field amplitudes at interfaces. They parallel the Abelès recurrence relations for layered isotropic media. These matrix relations include multiple reflections while they deal with total fields. They can be applied directly to complex stacks of isotropic and anisotropic thin films.

© 2000 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.3820) Materials : Magneto-optical materials
(160.4760) Materials : Optical properties
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(310.0310) Thin films : Thin films

Original Manuscript: April 21, 1999
Revised Manuscript: September 28, 1999
Published: January 1, 2000

E. Cojocaru, "Simple recurrence matrix relations for multilayer anisotropic thin films," Appl. Opt. 39, 141-148 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Mentel, E. Schmidt, T. Mavrudis, “Birefringent filter with arbitrary orientation of the optic axis: an analysis of improved accuracy,” Appl. Opt. 31, 5022–5029 (1992). [CrossRef] [PubMed]
  2. P. J. Valle, F. Moreno, “Theoretical study of birefringent filters as intracavity wavelength selectors,” Appl. Opt. 31, 528–535 (1992). [CrossRef] [PubMed]
  3. J. F. Lotspeich, R. R. Stephens, D. M. Henderson, “Electrooptic tunable filters for infrared wavelengths,” IEEE J. Quantum. Electron. QE-18, 1253–1258 (1982). [CrossRef]
  4. Z. M. Li, B. T. Sullivan, R. R. Parsons, “Use of the 4 × 4 matrix method in the optics of multilayer magnetooptic recording media,” Appl. Opt. 27, 1334–1338 (1988). [CrossRef] [PubMed]
  5. D. A. Holmes, D. L. Feucht, “Electromagnetic wave propagation in birefringent multilayers,” J. Opt. Soc. Am. 56, 1763–1769 (1966). [CrossRef]
  6. S. Teitler, B. W. Henvis, “Refraction in stratified, anisotropic media,” J. Opt. Soc. Am. 60, 830–834 (1970). [CrossRef]
  7. J. Schesser, G. Eichmann, “Propagation of plane waves in biaxially anisotropic media,” J. Opt. Soc. Am. 62, 786–791 (1972). [CrossRef]
  8. G. J. Sprokel, “Reflectivity, rotation, and ellipticity of magnetooptic film structures,” Appl. Opt. 23, 3983–3989 (1984). [CrossRef] [PubMed]
  9. M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2 × 2 matrices,” J. Appl. Phys. 67, 6466–6475 (1990). [CrossRef]
  10. G. D. Landry, T. A. Maldonado, “Complete method to determine transmission and reflection characteristics at a planar interface between arbitrarily oriented biaxial media,” J. Opt. Soc. Am. A 12, 2048–2063 (1995). [CrossRef]
  11. E. Cojocaru, “Generalized Abelès relations for an anisotropic thin film of an arbitrary dielectric tensor,” Appl. Opt. 36, 2825–2829 (1997). [CrossRef] [PubMed]
  12. P. Yeh, “Extended Jones matrix method,” J. Opt. Soc. Am. 72, 507–513 (1982). [CrossRef]
  13. C. Gu, P. Yeh, “Extended Jones matrix method. II,” J. Opt. Soc. Am. A 10, 966–973 (1993). [CrossRef]
  14. F. Abelès, “Sur la propagation des ondes électromagnétiques dans les milieux stratifiés,” Ann. Phys. 3, 504–520 (1948).
  15. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1965), Chap. 4, pp. 59–62.
  16. F. Horowitz, “Generalized Abelès relations for an anisotropic thin film with an arbitrary dielectric tensor: comments,” Appl. Opt. 37, 4268–4269 (1998). [CrossRef]
  17. D. M. Spink, C. B. Thomas, “Optical constant determination of thin films: an analytical solution,” Appl. Opt. 27, 4362–4362 (1988). [CrossRef] [PubMed]
  18. D. W. Berreman, “Optics in stratified and anisotropic media: 4 × 4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972). [CrossRef]
  19. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69, 742–756 (1979). [CrossRef]
  20. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), Chap. 14, pp. 665–718.
  21. H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, Mass., 1957), Chap. 4, pp. 107–109.
  22. T. Motohiro, Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt. 28, 2466–2482 (1989). [CrossRef] [PubMed]
  23. H. Fu, S. Sugaya, M. Mansuripur, “Measuring distribution of the ellipsoid of birefringence through the thickness of optical disk substrates,” Appl. Opt. 33, 5994–5999 (1994). [CrossRef] [PubMed]
  24. Y. Tomita, T. Yoshino, “Optimum design of multilayer-medium structures in a magneto-optical readout system,” J. Opt. Soc. Am. A 1, 809–817 (1984). [CrossRef]
  25. G. J. Sprokel, “Reflectivity, rotation, and ellipticity of magnetooptic film structures,” Appl. Opt. 23, 3983–3989 (1984). [CrossRef] [PubMed]
  26. S. Sugaya, M. Mansuripur, “Effect of tilted ellipsoid of birefringence on readout signal in magneto-optical disk data storage,” Appl. Opt. 33, 5999–6008 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited