OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 1 — Jan. 1, 2000
  • pp: 173–182

Unbalanced versus balanced operation in an optical coherence tomography system

Adrian Gh. Podoleanu  »View Author Affiliations

Applied Optics, Vol. 39, Issue 1, pp. 173-182 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (180 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The choice of a balanced optical coherence tomography (OCT) configuration versus an unbalanced OCT configuration with optimized reference-arm attenuation is discussed. The choice depends on the receiver noise, the fiber-end reflection R, and the power to the object. When OCT is used to investigate biological tissue an equivalent R′ can be evaluated as the compound reflected light from tissue. In this case an additional parameter has to be considered: the confocal optical sectioning interval of the OCT system.

© 2000 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(230.5160) Optical devices : Photodetectors

Original Manuscript: May 24, 1999
Revised Manuscript: August 11, 1999
Published: January 1, 2000

Adrian Gh. Podoleanu, "Unbalanced versus balanced operation in an optical coherence tomography system," Appl. Opt. 39, 173-182 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. V. Sorin, D. M. Baney, “A simple intensity noise reduction technique for optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992). [CrossRef]
  2. A. H. Takada, K. Yukimatsu, “Phase-noise and shot-noise operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483–2485 (1991). [CrossRef]
  3. K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum. Electron. 34, 1098–1108 (1998). [CrossRef]
  4. J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Select. Topics Quantum Electron. 2, 1017–1028 (1996). [CrossRef]
  5. E. A. Swanson, D. Huang, M. R. Lee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992). [CrossRef] [PubMed]
  6. J. A. Izaat, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, “Optical coherence in microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994). [CrossRef]
  7. A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1) , 12–20 (1998). [CrossRef]
  8. A. Gh. Podoleanu, D. A. Jackson, “Noise analysis of a combined optical coherence tomograph and confocal scanning ophthalmoscope,” Appl. Opt. 38, 2116–2127 (1999). [CrossRef]
  9. P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–97 (1990). [CrossRef]
  10. R. Ulrich, S. C. Rashleigh, “Beam-to-fiber coupling with low standing wave ratio,” Appl. Opt. 19, 2453–2456 (1980). [CrossRef] [PubMed]
  11. American National Standards Institute, “Safe use of lasers,” (American National Standards Institute, New York, 1986).
  12. Nirvana balanced photodetector in 1999–2000 (New Focus, Inc., 2630 Walsh Avenue, Santa Clara, Calif. 95051-9959), Vol. 10.
  13. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ungarunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998), http://epubs.osa.org/opticsexpress . [CrossRef] [PubMed]
  14. M. Rajadhyaksha, R. R. Anderson, R. Webb, “Video-rate confocal scanning laser microscope for imaging human tissues in vivo,” Appl. Opt. 38, 2105–2115 (1999). [CrossRef]
  15. J. G. Burnett, S. McRoberts, N. R. King, D. G. Luke, R. McBride, A. H. Greenaway, “Birefringence compensated cylindrical piezoelectric fibre phase modulator,” J. Mod. Opt. 43, 583–589 (1996). [CrossRef]
  16. T. Hellmuth, J. Wei, “Optical coherence tomography corneal mapping apparatus,” U.S. patent5,491,524 (13February1996).
  17. J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun. 154, 1–4 (1998). [CrossRef]
  18. G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997). [CrossRef]
  19. J. M. Schmitt, A. Knüttel, A. Gandjbakhche, R. F. Bonner, “Optical characterization of dense tissue using low-coherence interferometry,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. SPIE1889, 197–211 (1993). [CrossRef]
  20. Y. Pan, R. Birngruber, J. Rosperich, R. Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34, 6564–6574 (1995). [CrossRef] [PubMed]
  21. J. M. Schmitt, A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997). [CrossRef]
  22. M. Kempe, A. Z. Genack, W. Rudolph, P. Dorn, “Ballistic and diffuse light detection in confocal and heterodyne imaging systems,” J. Opt. Soc. Am. A 14, 216–223 (1997). [CrossRef]
  23. C. L. Smithpeter, A. K. Dunn, A. J. Welch, R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” Appl. Opt. 37, 2749–2754 (1998). [CrossRef]
  24. F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited