OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 1 — Jan. 1, 2000
  • pp: 94–103

Calibration of a deformable mirror and Strehl ratio measurements by use of phase diversity

Mats G. Löfdahl, Göran B. Scharmer, and Wang Wei  »View Author Affiliations


Applied Optics, Vol. 39, Issue 1, pp. 94-103 (2000)
http://dx.doi.org/10.1364/AO.39.000094


View Full Text Article

Enhanced HTML    Acrobat PDF (1005 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Calibration experiments with a bimorph mirror are presented. Phase-diversity wave-front sensing is used for measuring the control matrix, nulling wave-front errors in the optical setup, including the mirror, and measuring Strehl ratios and residual higher-order aberrations. The Strehl ratio of the calibrated system is measured to be 0.975, corresponding to 1/40 wave rms in the residual wave front. The conclusion is that a phase-diversity wave-front sensor is easier to install and use than interferometers and can replace them in optical setups for testing adaptive optics systems.

© 2000 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(110.3000) Imaging systems : Image quality assessment
(110.6770) Imaging systems : Telescopes
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure

History
Original Manuscript: July 27, 1999
Revised Manuscript: October 18, 1999
Published: January 1, 2000

Citation
Mats G. Löfdahl, Göran B. Scharmer, and Wang Wei, "Calibration of a deformable mirror and Strehl ratio measurements by use of phase diversity," Appl. Opt. 39, 94-103 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-1-94


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. B. Scharmer, D. S. Brown, L. Pettersson, J. Rehn, “Concepts for the Swedish 50-cm Vacuum Solar Telescope,” Appl. Opt. 24, 2558–2564 (1985). [CrossRef] [PubMed]
  2. M. Shand, G. Scharmer, “The Swedish Vacuum Solar Telescope data acquisition and control systems,” in Site Properties of the Canarian Observatories, C. Muñoz-Tuñón, ed., Vol. 42 of New Astronomy Reviews (Elsevier, Amsterdam, 1998), pp. 481–484.
  3. M. Shand, G. B. Scharmer, W. Wei, “Correlation tracking and adaptive optics control using off-the-shelf workstation technology,” in High Resolution Solar Physics: Theory, Observations and Techniques, T. Rimmele, R. R. Radick, K. S. Balasubramaniam, eds., Proceedings of the Nineteenth Sacramento Peak Summer Workshop, Vol. 183 of the Astronomical Society of the Pacific Conference Series (ASP, San Francisco, Calif., 1999), p. 231.
  4. M. G. Löfdahl, G. B. Scharmer, “Wavefront sensing and image restoration from focused and defocused solar images,” Astron. Astrophys. Suppl. Ser. 107, 243–264 (1994).
  5. M. G. Löfdahl, T. E. Berger, R. A. Shine, A. M. Title, “Preparation of a dual wave-length sequence of high-resolution solar photospheric images using phase diversity,” Astrophys. J. 495, 965–972 (1998). [CrossRef]
  6. G. B. Scharmer, M. Owner-Petersen, T. Korhonen, A. Title, “The new Swedish solar telescope,” in High Resolution Solar Physics: Theory, Observations and Techniques, T. Rimmele, R. R. Radick, K. S. Balasubramaniam, eds., Proceedings of the Nineteenth Sacramento Peak Summer Workshop, Vol. 183 of the Astronomical Society of the Pacific Conference Series (ASP, San Francisco, Calif., 1999), p. 157.
  7. G. B. Scharmer, M. Shand, M. G. Löfdahl, W. Wei are preparing a manuscript to be called “A workstation based solar adaptive optics system.”
  8. G. B. Scharmer, “Object-independent fast phase-diversity,” in High Resolution Solar Physics: Theory, Observations and Techniques, T. Rimmele, R. R. Radick, K. S. Balasubramaniam, eds., Proceedings of the Nineteenth Sacramento Peak Summer Workshop, Vol. 183 of the Astronomical Society of the Pacific Conference Series (ASP, San Francisco, Calif., 1999), p. 330.
  9. R. G. Paxman, J. H. Seldin, M. G. Löfdahl, G. B. Scharmer, C. U. Keller, “Evaluation of phase-diverse techniques for solar-image restoration,” Astrophys. J. 466, 1087–1099 (1996). [CrossRef]
  10. R. L. Kendrick, D. S. Acton, A. L. Duncan, “Phase-diversity wave-front sensor for imaging systems,” Appl. Opt. 33, 6533–6546 (1994). [CrossRef] [PubMed]
  11. R. G. Paxman, T. J. Schulz, J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9, 1072–1085 (1992). [CrossRef]
  12. R. G. Paxman, J. R. Fienup, “Optical misalignment sensing and image reconstruction using phase diversity,” J. Opt. Soc. Am. A 5, 914–923 (1988). [CrossRef]
  13. R. A. Gonsalves, R. Chidlaw, “Wavefront sensing by phase retrieval,” in Applications of Digital Image Processing III, A. G. Tescher, ed., Proc. SPIE207, 32–39 (1979). [CrossRef]
  14. M. G. Löfdahl, A. L. Duncan, G. B. Scharmer, “Fast phase diversity wavefront sensing for mirror control,” in Adaptive Optical System Technologies, D. Bonnaccini, R. K. Tyson, eds., Proc. SPIE3353, 952–963 (1998). [CrossRef]
  15. R. G. Paxman, J. H. Seldin, “Fine-resolution astronomical imaging with phase-diverse speckle,” in Digital Recovery and Synthesis II, P. S. Idell, ed., Proc. SPIE2029, 287–298 (1993). [CrossRef]
  16. R. L. Kendrick, R. Bell, A. L. Duncan, G. D. Love, D. S. Acton, “Closed loop wavefront correction using phase diversity,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 844–853 (1998). [CrossRef]
  17. M. G. Löfdahl, R. L. Kendrick, A. Harwit, K. E. Mitchell, A. L. Duncan, J. H. Seldin, R. G. Paxman, D. S. Acton, “A phase diversity experiment to measure piston misalignment on the segmented primary mirror of the Keck II telescope,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 1190–1201 (1998). [CrossRef]
  18. D. J. Lee, B. M. Welsh, M. C. Roggemann, B. L. Ellerbroek, “Diagnosing unknown aberrations in an adaptive optics system by use of phase diversity,” Opt. Lett. 22, 952–954 (1997). [CrossRef] [PubMed]
  19. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  20. C. L. Lawson, R. J. Hanson, Solving Least Squares Problems (Prentice-Hall, Englewood Cliffs, N.J., 1974).
  21. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).
  22. M. J. Northcott, Laplacian Optics, Inc., Suite 134, 2800 Woodlawn Drive, Honolulu, HI 96822 (personal communication, 1999).
  23. F. Roddier, “The problematic of adaptive optics design,” in Adaptive Optics for Astronomy, D. M. Alloin, J.-M. Mariotti, eds., NATO ASI Series423, 89–112 (1994).
  24. E. G. Stevens, J. P. Lavine, “An analytical, aperture, and two-layer carrier diffusion MTF and quantum efficiency model for solid-state image sensors,” IEEE Trans. Electron. Dev. 41, 1753–1760 (1994). [CrossRef]
  25. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  26. R. N. Bracewell, Two-Dimensional Imaging (Prentice-Hall, Englewood Cliffs, N.J., 1995).
  27. V. N. Mahajan, “Strehl ratio for primary aberrations: some analytical results for circular and annular pupils,” J. Opt. Soc. Am. 72, 1258–1266 (1982). [CrossRef]
  28. W. J. Smith, Modern Optical Engineering: The Design of Optical Systems, 2nd ed. (McGraw-Hill, New York, 1990).
  29. R. G. Paxman, T. J. Schulz, J. R. Fienup, “Phase-diverse speckle interferometry,” in Signal Recovery and Synthesis IV, Vol. 11 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 5–7.
  30. B. L. Ellerbroek, B. J. Thelen, D. J. Lee, D. A. Carrara, R. G. Paxman, “Comparison of Shack–Hartmann wavefront sensing and phase-diverse phase retrieval,” in Adaptive Optics and Applications, R. K. Tyson, R. Q. Fugate, eds., Proc. SPIE3126, 307–320 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited