OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 10 — Apr. 1, 2000
  • pp: 1549–1554

Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator

Jeffrey A. Davis, Dylan E. McNamara, Don M. Cottrell, and Tomio Sonehara  »View Author Affiliations


Applied Optics, Vol. 39, Issue 10, pp. 1549-1554 (2000)
http://dx.doi.org/10.1364/AO.39.001549


View Full Text Article

Acrobat PDF (721 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show how to two dimensionally encode the polarization state of an incident light beam using a parallel-aligned liquid-crystal spatial light modulator (LCSLM). Each pixel of the LCSLM acts as a voltage-controlled wave plate and can be programmed over a 2π phase range at a wavelength of 514.5 nm. Techniques are reviewed for either rotating the major axis of elliptically polarized light or for converting an input linearly polarized beam into an arbitrary elliptically polarized beam. Experimental results are demonstrated in which we generate various two-dimensional spatial patterns of polarized light. Several potential applications are suggested. We also report an unexpected edge-enhancement effect that might be useful in image processing applications.

© 2000 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(230.5440) Optical devices : Polarization-selective devices
(230.6120) Optical devices : Spatial light modulators
(260.5430) Physical optics : Polarization

History
Original Manuscript: December 8, 1999
Published: April 1, 2000

Citation
Jeffrey A. Davis, Dylan E. McNamara, Don M. Cottrell, and Tomio Sonehara, "Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator," Appl. Opt. 39, 1549-1554 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-10-1549


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. C. Tidwell, D. H. Ford, W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990). [CrossRef] [PubMed]
  2. R. Fontana, R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cerenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983). [CrossRef]
  3. S. Sanyal, P. Bandyopadhyay, A. Ghosh, “Vector wave imagery using a birefringent lens,” Opt. Eng. 37, 592–599 (1998). [CrossRef]
  4. J. E. Ford, F. Yu, K. Urquhart, Y. Fainman, “Polarization-selective computer-generated holograms,” Opt. Lett. 18, 456–458 (1993). [CrossRef] [PubMed]
  5. U. D. Zeitner, B. Schnabel, E.-B. Kley, F. Wyrowski, “Polarization multiplexing of diffractive elements with metal-stripe grating pixels,” Appl. Opt. 38, 2177–2181 (1999). [CrossRef]
  6. F. Gori, “Measuring Stokes parameters by means of polarization grating,” Opt. Lett. 24, 584–586 (1999). [CrossRef]
  7. G. Yao, L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537–539 (1999). [CrossRef]
  8. C. Ye, “Photopolarimetric measurement of single, intact pulp fibers by Mueller matrix imaging polarimetry,” Appl. Opt. 38, 1975–1985 (1999). [CrossRef]
  9. S. C. Tidwell, D. H. Ford, W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31, 1527–1530 (1992). [CrossRef]
  10. R. Yamaguchi, T. Nose, S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28, 1730–1731 (1989). [CrossRef]
  11. M. Stalder, M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996). [CrossRef] [PubMed]
  12. T. Sonehara, J. Amako, “Phase modulated liquid crystal spatial light modulator with VGA resolution,” in Spatial Light Modulators, G. Burdge, S. Esener, eds., Vol. 14 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 165–168.
  13. J. A. Davis, P. S. Tsai, D. M. Cottrell, T. Sonehara, J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051–1057 (1999). [CrossRef]
  14. C. Ye, “Construction of an optical rotator using quarter-wave plates and an optical retarder,” Opt. Eng. 34, 3031–3035 (1995). [CrossRef]
  15. A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991), Chap. 9.2, p. 326.
  16. Z. Zhuang, S.-W. Suh, J. S. Patel, “Polarization controller using nematic liquid crystals,” Opt. Lett. 24, 694–696 (1999). [CrossRef]
  17. See, for example, Polarization Solutions, Meadowlark Optics 1997–1998 Catalog (Meadowlark, Optics, Longmont, Colorado 80504-9470), p. 44.
  18. D. Casasent, F. Caimi, M. Petronb, A. Khomenko, “Applications of the Priz light modulation,” Appl. Opt. 21, 3846–3854 (1982). [CrossRef] [PubMed]
  19. D. Armitage, J. I. Thackara, “Liquid crystal differentiating spatial light modulators,” in Nonlinear Optics and Applications, P. Yeh, ed., Proc. SPIE613, 165–170 (1986).
  20. T. H. Chao, “Real time optical edge enhancement using a Hughes liquid crystal light valve,” Appl. Opt. 28, 4727–4731 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited