OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 10 — Apr. 1, 2000
  • pp: 1580–1588

Monte Carlo Simulations of the Diffuse Backscattering Mueller Matrix for Highly Scattering Media

Sebastian Bartel and Andreas H. Hielscher  »View Author Affiliations


Applied Optics, Vol. 39, Issue 10, pp. 1580-1588 (2000)
http://dx.doi.org/10.1364/AO.39.001580


View Full Text Article

Acrobat PDF (1389 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a Monte Carlo algorithm that computes all two-dimensional elements of the diffuse backscattering Mueller matrix for highly scattering media. Using the Stokes–Mueller formalism and scattering amplitudes calculated with Mie theory, we are able to consider polarization-dependent photon propagation in highly scattering media, including linearly and circularly polarized light. The numerically determined matrix elements are compared with experimental data for different particle sizes and show good agreement in both azimuthal and radial direction.

© 2000 Optical Society of America

OCIS Codes
(170.5280) Medical optics and biotechnology : Photon migration
(260.5430) Physical optics : Polarization
(290.1350) Scattering : Backscattering
(290.4020) Scattering : Mie theory
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

Citation
Sebastian Bartel and Andreas H. Hielscher, "Monte Carlo Simulations of the Diffuse Backscattering Mueller Matrix for Highly Scattering Media," Appl. Opt. 39, 1580-1588 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-10-1580


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
  2. O. Emile, F. Bretenaker, and A. Le Floch, “Rotating polarization imaging in turbid media,” Opt. Lett. 21, 1706–1708 (1996).
  3. S. G. Demos and R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
  4. R. R. Anderson, “Polarized-light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
  5. S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, and F. K. Tittel, “Video reflectometry to extract optical properties of tissue in-vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, and P. van der Zee, eds., Vol. ISII of SPIE Institute Series (SPIE, Bellingham, Wash., 1992), pp. 211–226.
  6. S. G. Demos and R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
  7. S. L. Jacques, L. H. Wang, D. V. Stephens, and M. Ostermeyer, “Polarized light transmission through skin using video reflectometry: toward optical tomography of superficial tissue layers,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE 2671, 199–220 (1996).
  8. A. H. Hielscher, J. R. Mourant, and I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125–135 (1997).
  9. G. M. Kattawar, M. J. Rakovic, and B. D. Cameron, “Laser backscattering polarization patterns from turbid media: theory and experiment,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto and M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 105–110.
  10. C. Brosseau, Fundamentals of Polarized Light (Wiley, New York, 1998).
  11. E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, New York, 1993).
  12. R. M. A. Azzam, “Mueller-matrix ellipsometry: a review,” in Polarization: Measurement, Analysis, and Remote Sensing, D. H. Goldstein and R. A. Chipman, eds., Proc. SPIE 3121, 396–399 (1997).
  13. W. S. Bickel and W. M. Bailey, “Stokes vectors, Mueller matrices, and polarized light scattering,” Am. J. Phys. 53, 468–478 (1985).
  14. A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, “Diffuse backscattering Mueller matrices for highly scattering media,” Opt. Exp. 1, 441–454 (1997); http://epubs.osa.org/oearchive/pdf/2826.pdf.
  15. N. V. Voshchinnikov and V. V. Karjukin, “Multiple scattering of polarized radiation in circumstellar dust shells,” Astron. Astrophys. 288, 883–896 (1994).
  16. H. T. Chuah and H. S. Tan, “A Monte Carlo backscatter model for radar backscatter from a half-space random medium,” IEEE Trans. Geosci. Remote Sens. 27, 86–93 (1998).
  17. M. Dogariu and T. Asakaru, “Polarization dependent backscattering patterns from weakly scattering media,” J. Opt. (Paris) 24, 271–278 (1993).
  18. M. J. Rakovic, G. W. Kattawar, M. Mehrübeoglu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Cote, “Light backscattering polarization patterns from turbid media: theory and experiments,” Appl. Opt. 38, 3399–3408 (1999).
  19. L. H. Wang and S. L. Jacques, “Optimized radial and angular positions in Monte Carlo modeling,” Med. Phy. 21, 1081–1083 (1994).
  20. L. H. Wang, and S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
  21. L. H. Wang and S. L. Jacques, “Monte Carlo modeling of light transport,” in Optical-Thermal Responses of Laser Irradiated Tissue, A. J. Welch and M. van Gemert (Plenum, New York, 1995), pp. 73–100; (source code available at http://omlc.ogi.edu/software/mc/index.html).
  22. A. H. Hielscher, L. Wang, F. K. Tittel, and S. L. Jacques, “Influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
  23. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier North-Holland, New York, 1977).
  24. D. G. M. Anderson and R. Barakat, “Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix,” J. Opt. Soc. Am. A 11, 2305–2319 (1994).
  25. C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).
  26. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  27. I. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, Fla., 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited