OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 10 — Apr. 1, 2000
  • pp: 1637–1642

Optimum modulation and demodulation matrices for solar polarimetry

Jose Carlos del Toro Iniesta and Manuel Collados  »View Author Affiliations

Applied Optics, Vol. 39, Issue 10, pp. 1637-1642 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (102 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Both temporal and/or spatial modulation are mandatory in current solar polarimetry [Appl. Opt. 24, 3893 (1985); 26, 3838 (1987)]. The modulating and demodulating processes are mathematically described by matrices O and D, respectively, on whose structure the accuracy of Stokes parameter measurements depend. We demonstrate, based on the definition of polarimetric efficiency [Instituto de Astrofísica de Canarias Internal Report (1994); ASP Conf. Ser. 184, 3 (1999)], that the maximum efficiencies of an ideal polarimeter are unity for Stokes I and for (Q2 + U2 + V2)1/2 and that this occurs if and only if O T O is diagonal; given a general (possibly nonideal) modulation matrix O, the optimum demodulation matrix turns out to be D = (O T O)-1O T ; and the maximum efficiencies in the nonideal case are given by the rms value of the column elements of matrix O and are reached by modulation matrices such that O T O is diagonal. From these analytical results we distill two recipes useful in the practical design of polarimeters. Their usefulness is illustrated by discussing cases of currently available solar polarimeters. Although specifically devoted to solar polarimetry, the results here may be applied in practically all other branches of science for which polarimetric measurements are needed.

© 2000 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(220.4830) Optical design and fabrication : Systems design
(260.5430) Physical optics : Polarization
(350.1260) Other areas of optics : Astronomical optics

Original Manuscript: July 26, 1999
Revised Manuscript: December 8, 1999
Published: April 1, 2000

Jose Carlos del Toro Iniesta and Manuel Collados, "Optimum modulation and demodulation matrices for solar polarimetry," Appl. Opt. 39, 1637-1642 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. O. Stenflo, H. P. Povel, “Astronomical polarimeter with 2-D detector arrays,” Appl. Opt. 24, 3893–3898 (1985). [CrossRef] [PubMed]
  2. B. W. Lites, “Rotating waveplates as polarization modulators for Stokes polarimetry on the Sun: evaluation of seeing-induced crosstalk errors,” Appl. Opt. 26, 3838–3845 (1987). [CrossRef] [PubMed]
  3. D. F. Elmore, B. W. Lites, S. Tomczyk, A. P. Skumanich, R. B. Dunn, J. A. Schuenke, K. V. Streander, T. W. Leach, C. W. Chambellan, H. K. Hull, L. B. Lacey, “The advanced Stokes polarimeter: a new instrument for solar magnetic field research,” in Polarization and Measurement, D. H. Goldstein, R. A. Chipman, eds., Proc. SPIE1746, 22–33 (1992). [CrossRef]
  4. J. O. Stenflo, C. U. Keller, H. P. Povel, “Demodulation of all four Stokes parameters with a single CCD. ZIMPOL II conceptual design,” in LEST Foundation Technical Report 54, O. Engvold, Ø. Hauge, eds. (The Institute of Theoretical Astrophysics, University of Oslo, 1992).
  5. C. U. Keller, P. N. Bernasconi, U. Egger, H. P. Povel, P. Steiner, J. O. Stenflo, “Visible and near-infrared polarimetry with LEST,” in LEST Foundation Technical Report 59, O. Engvold, Ø. Hauge, eds. (The Institute of Theoretical Astrophysics, University of Oslo, 1995).
  6. V. Martínez Pillet, M. Collados, J. Sánchez Almeida, V. González, A. Cruz-López, A. Manescau, E. Joven, E. Paez, J. J. Díaz, O. Feeney, V. Sánchez, G. Scharmer, D. Soltau, “LPSP and TIP: Full Stokes polarimeters for the Canary Islands observatories,” in High Resolution Solar Physics: Theory, Observations, and Techniques, T. Rimmele, R. Raddick, K. S. Balasubramaniam, eds., ASP Conf. Ser. 184, 264–272 (Astronomical Society of the Pacific, San Francisco, 1999).
  7. C. R. Givens, A. Kostinski, “A simple necessary and sufficient condition on physically realizable Mueller matrices,” J. Mod. Opt. 40, 471–481 (1983). [CrossRef]
  8. E. Landi Degl’Innocenti, J. C. del Toro Iniesta, “Physical significance of experimental Mueller matrices,” J. Opt. Soc. Am. A 15, 533–537 (1998). [CrossRef]
  9. S.-Y. Lu, R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–113 (1996). [CrossRef]
  10. J. O. Stenflo, “Optimization of the LEST polarization modulation system,” in LEST Foundation Technical Report 44, O. Engvold, Ø. Hauge, eds. (The Institute of Theoretical Astrophysics, University of Oslo, 1991).
  11. J. Sánchez Almeida, M. Collados, V. Martínez Pillet, “Modulation schemes for the polarimeter of the SVST,” (Instituto de Astrofísica de Canaria, La Laguna, 1994).
  12. M. Collados, “High-resolution spectropolarimetry and magnetometry,” in Third Euroconference on Advances in Solar Physics: Magnetic Fields and Oscillations, B. Schmieder, A. Hofman, J. Staude, eds., ASP Conf. Ser.184, 3–22 (Astronomical Society of the Pacific, San Francisco, 1999).
  13. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, 1992), pp. 51–63.
  14. A. M. Gandorfer, H. P. Povel, “First observations with a new imaging polarimeter,” Astron. Astrophys. 328, 381–389 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited