OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 10 — Apr. 1, 2000
  • pp: 1659–1667

Chemometric analysis of frequency-domain photon migration data: quantitative measurements of optical properties and chromophore concentrations in multicomponent turbid media

Andrew J. Berger, Vasan Venugopalan, Anthony J. Durkin, Tuan Pham, and Bruce J. Tromberg  »View Author Affiliations


Applied Optics, Vol. 39, Issue 10, pp. 1659-1667 (2000)
http://dx.doi.org/10.1364/AO.39.001659


View Full Text Article

Enhanced HTML    Acrobat PDF (209 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Frequency-domain photon migration (FDPM) is a widely used technique for measuring the optical properties (i.e., absorption, μ a , and reduced scattering, μ s ′, coefficients) of turbid samples. Typically, FDPM data analysis is performed with models based on a photon diffusion equation; however, analytical solutions are difficult to obtain for many realistic geometries. Here, we describe the use of models based instead on representative samples and multivariate calibration (chemometrics). FDPM data at seven wavelengths (ranging from 674 to 956 nm) and multiple modulation frequencies (ranging from 50 to 600 MHz) were gathered from turbid samples containing mixtures of three absorbing dyes. Values for μ a and μ s ′ were extracted from the FDPM data in different ways, first with the diffusion theory and then with the chemometric technique of partial least squares. Dye concentrations were determined from the FDPM data by three methods, first by least-squares fits to the diffusion results and then by two chemometric approaches. The accuracy of the chemometric predictions was comparable or superior for all three dyes. Our results indicate that chemometrics can recover optical properties and dye concentrations from the frequency-dependent behavior of photon density waves, without the need for diffusion-based models. Future applications to more complicated geometries, lower-scattering samples, and simpler FDPM instrumentation are discussed.

© 2000 Optical Society of America

OCIS Codes
(170.1580) Medical optics and biotechnology : Chemometrics
(170.4090) Medical optics and biotechnology : Modulation techniques
(170.5280) Medical optics and biotechnology : Photon migration

History
Original Manuscript: October 15, 1999
Revised Manuscript: January 5, 2000
Published: April 1, 2000

Citation
Andrew J. Berger, Vasan Venugopalan, Anthony J. Durkin, Tuan Pham, and Bruce J. Tromberg, "Chemometric analysis of frequency-domain photon migration data: quantitative measurements of optical properties and chromophore concentrations in multicomponent turbid media," Appl. Opt. 39, 1659-1667 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-10-1659

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited