OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 11 — Apr. 10, 2000
  • pp: 1681–1699

Communicating with Waves Between Volumes: Evaluating Orthogonal Spatial Channels and Limits on Coupling Strengths

David A. B. Miller  »View Author Affiliations


Applied Optics, Vol. 39, Issue 11, pp. 1681-1699 (2000)
http://dx.doi.org/10.1364/AO.39.001681


View Full Text Article

Acrobat PDF (358 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A rigorous method for finding the best-connected orthogonal communication channels, modes, or degrees of freedom for scalar waves between two volumes of arbitrary shape and position is derived explicitly without assuming planar surfaces or paraxial approximations. The communication channels are the solutions of two eigenvalue problems and are identical to the cavity modes of a double phase-conjugate resonator. A sum rule for the connection strengths is also derived, the sum being a simple volume integral. These results are used to analyze rectangular prism volumes, small volumes, thin volumes in different relative orientations, and arbitrary near-field volumes: all situations in which previous planar approaches have failed for one or more reasons. Previous planar results are reproduced explicitly, extending them to finite depth. Depth is shown not to increase the number of communications modes unless the volumes are close when compared with their depths. How to estimate the connection strengths in some cases without a full solution of the eigenvalue problem is discussed so that estimates of the number of usable communications modes can be made from the sum rule. In general, the approach gives a rigorous basis for handling problems related to volume sources and receivers. It may be especially applicable in near-field problems and in situations in which volume is an intrinsic part of the problem.

© 2000 Optical Society of America

OCIS Codes
(110.2990) Imaging systems : Image formation theory
(260.1960) Physical optics : Diffraction theory

Citation
David A. B. Miller, "Communicating with Waves Between Volumes: Evaluating Orthogonal Spatial Channels and Limits on Coupling Strengths," Appl. Opt. 39, 1681-1699 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-11-1681

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited