OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 11 — Apr. 10, 2000
  • pp: 1711–1730

Visual communication with retinex coding

Friedrich O. Huck, Carl L. Fales, Richard E. Davis, and Rachel Alter-Gartenberg  »View Author Affiliations

Applied Optics, Vol. 39, Issue 11, pp. 1711-1730 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (1385 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Visual communication with retinex coding seeks to suppress the spatial variation of the irradiance (e.g., shadows) across natural scenes and preserve only the spatial detail and the reflectance (or the lightness) of the surface itself. The separation of reflectance from irradiance begins with nonlinear retinex coding that sharply and clearly enhances edges and preserves their contrast, and it ends with a Wiener filter that restores images from this edge and contrast information. An approximate small-signal model of image gathering with retinex coding is found to consist of the familiar difference-of-Gaussian bandpass filter and a locally adaptive automatic-gain control. A linear representation of this model is used to develop expressions within the small-signal constraint for the information rate and the theoretical minimum data rate of the retinex-coded signal and for the maximum-realizable fidelity of the images restored from this signal. Extensive computations and simulations demonstrate that predictions based on these figures of merit correlate closely with perceptual and measured performance. Hence these predictions can serve as a general guide for the design of visual communication channels that produce images with a visual quality that consistently approaches the best possible sharpness, clarity, and reflectance constancy, even for nonuniform irradiances. The suppression of shadows in the restored image is found to be constrained inherently more by the sharpness of their penumbra than by their depth.

© 2000 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(110.0110) Imaging systems : Imaging systems
(150.0150) Machine vision : Machine vision
(250.0250) Optoelectronics : Optoelectronics
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics

Original Manuscript: May 26, 1999
Revised Manuscript: September 24, 1999
Published: April 10, 2000

Friedrich O. Huck, Carl L. Fales, Richard E. Davis, and Rachel Alter-Gartenberg, "Visual communication with retinex coding," Appl. Opt. 39, 1711-1730 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. H. Land, “Color vision and the natural image,” Proc. Natl. Acad. Sci. USA 45, 115–129 (1959). [CrossRef]
  2. E. H. Land, J. J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971). [CrossRef] [PubMed]
  3. E. H. Land, “Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image,” Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983). [CrossRef] [PubMed]
  4. B. K. P. Horn, “Determining lightness from an image,” Comput. Graphics Image Process. 3, 277–299 (1974). [CrossRef]
  5. B. K. P. Horn, Robotic Vision (MIT Press, Cambridge, Mass., and McGraw-Hill, New York, 1985).
  6. A. Blake, “On lightness computation in the Mondrian world,” in Central and Peripheral Mechanisms of Colour Vision, T. Ottoson, S. Zeki, eds. (Macmillan, New York, 1985), pp. 45–49.
  7. A. C. Hurlbert, “Formal connections between lightness algorithms,” J. Opt. Soc. Am. A 3, 1684–1693 (1986). [CrossRef] [PubMed]
  8. A. C. Hulbert, “The computation of color,” Ph.D. dissertation, MIT Tech. Rep.1154 (MIT Press, Cambridge, Mass., 1989).
  9. A. Valberg, B. Lange-Malecki, “‘Color constancy’ in Mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990). [CrossRef]
  10. D. J. Jobson, Z. Rahman, G. A. Woodell, “Properties and performance of a center/surround retinex,” IEEE Trans. Image Process. 6, 451–462 (1997). [CrossRef] [PubMed]
  11. D. J. Jobson, Z. Rahman, G. A. Woodell, “A multiscale retinex for bridging the gap between color images and the human observation of scenes,” IEEE Trans. Image Process. 6, 965–976 (1997). [CrossRef] [PubMed]
  12. C. E. Shannon, “A mathematical theory of communication: part I,” Bell Syst. Tech. J. 27, 379–423 (1948); C. E. Shannon, “Mathematical theory of communication: part II,” Bell Syst. Tech. J. 28, 623–656 (1948); C. E. Shannon, W. Weaver, The Mathematical Theory of Communication (U. of Illinois Press, Urbana, Ill., 1964). [CrossRef]
  13. N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series (Wiley, New York, 1949).
  14. C. L. Fales, F. O. Huck, “An information theory of image gathering,” Inf. Sci. 57–58, 245–285 (1991). [CrossRef]
  15. C. L. Fales, F. O. Huck, R. Alter-Gartenberg, Z. Rahman, “Image gathering and digital restoration,” Philos. Trans. R. Soc. London A 354, 2249–2287 (1996). [CrossRef]
  16. F. O. Huck, C. L. Fales, Z. Rahman, “An information theory of visual communication,” Philos. Trans. R. Soc. London A 354, 2193–2248 (1996). [CrossRef]
  17. F. O. Huck, C. L. Fales, Z. Rahman, Visual Communication: An Information Theory Approach (Kluwer, Boston, 1997).
  18. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2392 (1987). [CrossRef] [PubMed]
  19. J. J. Atick, A. N. Redlich, “Towards a theory of early visual processing,” Neural Comp. 2, 308–320 (1990). [CrossRef]
  20. J. J. Atick, “Could information theory provide an ecological theory of sensory processing?” Network 3, 213–251 (1992). [CrossRef]
  21. Y. Tadmor, D. J. Tolhurst, “Discrimination of changes in the second-order statistics of natural and synthetic images,” Vision Res. 34, 541–554 (1994). [CrossRef] [PubMed]
  22. Y. Itakura, S. Tsutsumi, T. Takagi, “Statistical properties of the background noise for the atmospheric windows in the intermediate infrared region,” Infrared Phys. 14, 17–29 (1974). [CrossRef]
  23. J. W. Modestino, R. W. Fries, “Construction and properties of a useful two-dimensional random field,” IEEE Trans. Inf. Theory IT-26, 44–50 (1980). [CrossRef]
  24. M. Kass, J. Hughes, “A stochastic image model for AI,” in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 369–372.
  25. D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London B 207, 187–217 (1980). [CrossRef]
  26. D. Marr, Vision (Freeman, San Francisco, Calif., 1982).
  27. M. J. Hawken, A. J. Parker, “Spatial receptive field organization in monkey V1 and its relationship to the cone mosaic,” in Computational Models of Visual Processing, M. S. Landy, J. A. Morshon, eds. (MIT Press, Cambridge, Mass., 1991), pp. 83–93.
  28. C. Mead, Analog VLSI and Neural Systems (Addison-Wesley, Reading, Mass., 1989). [CrossRef]
  29. T. N. Cornsweet, Visual Perception (Academic, New York, 1970).
  30. T. N. Cornsweet, J. I. Yellott, “Intensity-dependent spatial summation,” J. Opt. Soc. Am. A 2, 1769–1789 (1985). [CrossRef] [PubMed]
  31. T. N. Cornsweet, “A simple retinal mechanism that has complex and profound effects on perception,” Am. J. Optom. Physiol. Opt. 62, 427–438 (1985). [CrossRef] [PubMed]
  32. J. I. Yellott, “Photon noise and constant-volume operators,” J. Opt. Soc. Am. A 4, 2418–2446 (1987). [CrossRef] [PubMed]
  33. R. Alter-Gartenberg, F. O. Huck, N. Narayanswamy, “Image recovery from edge primitives,” J. Opt. Soc. Am. A 7, 898–911 (1990). [CrossRef]
  34. S. Najand, D. Blough, G. Healey, “Forward and inverse model for the intensity-dependent spread filter,” J. Opt. Soc. Am. A 13, 1305–1314 (1996). [CrossRef]
  35. S. Mallat, S. Zhong, “Wavelet maxima representation,” in Wavelets and Applications, Y. Meyer, ed. (Masson, Paris, 1991), pp. 207–284.
  36. R. R. Coifman, Y. Meyer, M. V. Wickerhauser, “Wavelet analysis and signal processing,” in Wavelets and Their Applications, M. B. Ruskai, G. Beylkin, R. Coifman, I. Daubechies, S. Mallat, Y. Meyer, L. Raphael, eds. (Jones and Bartlett, Boston, 1992), pp. 153–178.
  37. R. R. Coifman, M. V. Wickerhauser, “Entropy-based algorithms for best basis selection,” special issue on Wavelet Transforms and Multiresolution Signal Analysis, IEEE Trans. Inf. Theory 38, 713–718 (1992).
  38. J. M. Shapiro, “Embedded image coding using zero trees of wavelet coefficients,” special issue on Wavelets and Signal Processing, IEEE Trans. Signal Process. 41, 3445–3462 (1993).
  39. K. Ramchandran, M. Vetterli, “Best wavelet packet bases in a rate-distortion sense,” IEEE Trans. Image Process. 2, 160–175 (1993). [CrossRef] [PubMed]
  40. J. Villasenor, B. Belzer, J. Liao, “Wavelet filter evaluation for image compression,” IEEE Trans. Image Process. 4, 1053–1060 (1995). [CrossRef] [PubMed]
  41. C. L. Fales, F. O. Huck, J. A. McCormick, S. K. Park, “Wiener restoration of sampled image data: end-to-end analysis,” J. Opt. Soc. Am. A5, 300–315 (1988); C. L. Fales, F. O. Huck, J. A. McCormick, S. K. Park, “Wiener restoration of sampled image data: end-to-end analysis,” in Selected Papers on Digital Image Restoration, M. Ibrahim Sezan, ed., Vol. MS47 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., 1992), pp. 229–243.
  42. A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).
  43. A. V. Oppenheim, R. W. Schafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975).
  44. R. C. Gonzalez, R. E. Wood, Digital Image Processing, 3rd ed. (Addison-Wesley, Reading, Mass., 1992).
  45. W. F. Schreiber, “Image processing for quality improvement,” Proc. IEEE 60, 1640–1651 (1978). [CrossRef]
  46. F. O. Huck, C. L. Fales, R. Alter-Gartenberg, S. K. Park, Z. Rahman, “Information-theoretic assessment of sampled imaging systems,” Opt. Eng. 38, 742–762 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited