OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 11 — Apr. 10, 2000
  • pp: 1743–1760

Information Metric as a Design Tool for Optoelectronic Imaging Systems

Rachel Alter-Gartenberg  »View Author Affiliations


Applied Optics, Vol. 39, Issue 11, pp. 1743-1760 (2000)
http://dx.doi.org/10.1364/AO.39.001743


View Full Text Article

Acrobat PDF (2615 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The resolution of images acquired by a digital camera is limited to the camera’s sampling interval. The images’ visual quality is affected by the level of the degradations caused by the imaging process from acquisition to display, including quantization, coding, transmission, and digital filtering. The information metric is presented as a design and an assessment tool for high-resolution digital imaging systems and all their subsystems. It associates gains in the acquired information with improvements in resolution, sharpness, and clarity of the final image representation. It demonstrates the need to integrate a digital filtering module that accounts for the optoelectronic imaging degradations in the optoelectronic imaging design and assessment. It further demonstrates the metric’s sensitivity by the assessment of the combined imaging processes as a unified system.

© 2000 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.3020) Image processing : Image reconstruction-restoration
(110.3000) Imaging systems : Image quality assessment
(350.5730) Other areas of optics : Resolution

Citation
Rachel Alter-Gartenberg, "Information Metric as a Design Tool for Optoelectronic Imaging Systems," Appl. Opt. 39, 1743-1760 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-11-1743


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. C. Andrews and B. R. Hunt, Digital Image Restoration (Prentice-Hall, Englewood Cliffs, N.J., 1977).
  2. A. K. Jain, Fundamentals of Electronic Imaging Systems: Some Aspects of Image Processing (Springer-Verlag, Berlin, 1986).
  3. W. F. Schrieber, Fundamental of Electronic Imaging Systems: Some Aspects of Image Processing (Springer-Verlag, Berlin, 1986).
  4. C. E. Shannon, “Communications in the presence of noise,” Proc. IRE 37, 10–21 (1949).
  5. C. L. Fales and F. O. Huck, “An information theory of image gathering,” Inf. Sci. J. 57–58, 245–285 (1991).
  6. R. Alter-Gartenberg, “Optimal visual communication channels,” IEEE Trans. Commun. 43, 1075–1088 (1995).
  7. C. L. Fales, F. O. Huck, R. Alter-Gartenberg, and Z. Rahman, “Image gathering and digital restoration,” Philos. Trans. R. Soc. A 354, 2249–2287 (1997).
  8. F. O. Huck, C. L. Fales, and Z. Rahman, Visual Communication: An Information Theory Approach (Kluwer, Boston, 1997).
  9. R. Alter-Gartenberg and S. K. Park, “Information as a quality metric for high-resolution imaging,” in Very High Resolution and Quality Imaging III, V. Algazi and A. G. Tescher, eds., Proc. SPIE 3308, 16–27 (1998).
  10. F. O. Huck, C. L. Fales, R. Alter-Gartenberg, S. K. Park, and Z. Rahman, “Information-theoretic assessment of sampled imaging systems,” Opt. Eng. 38, 742–762 (1999).
  11. S. K. Park and R. Hazra, “Aliasing as noise: a quantitative and qualitative assessment,” in Visual Information Processing ’93, F. O. Huck and R. D. Juday, eds., Proc. SPIE 1961, 2–13 (1993).
  12. S. K. Park and Z. Rahman, “Fidelity analysis of sampled imaging systems,” Opt. Eng. 38, 786–800 (1999).
  13. J. Olives, B. Lamiscarre, and M. Gazalet, “Optimization of electro-optical systems with an image quality measure,” in Very High Resolution and Quality Imaging, V. Algazi, S. Ono, and A. G. Tescher, eds., Proc. SPIE 3025, 158–167 (1997).
  14. R. Alter-Gartenberg, F. O. Huck, C. L. Fales, Z. Rahman, and S. E. Reichenbach, “Multiresponse imaging: information and fidelity,” Multidimen. Sys. Signal Process. 3, 189–210 (1992).
  15. R. Alter-Gartenberg, “Multiresolution imaging: an end-to-end assessment,” J. Math. Imag. Vision 8, 59–77 (1998).
  16. R. Alter-Gartenberg and S. K. Park, “Image decomposition: an end-to-end theory,” in Proceedings of the 1997 International Workshop on Sampling Theory and Applications, SAMPTA’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 49–54.
  17. R. Alter-Gartenberg and S. K. Park, “Information efficient decomposition,” in Visual Communications and Image Processing ’98, S. A. Rajala and M. Rabbani, eds., Proc. SPIE 3309, 645–654 (1998).
  18. Z. Rahman, R. Alter-Gartenberg, and S. E. Reichenbach, “Discrete cosine transform coding: information efficiency and fidelity,” in Visual Information Processing, F. O. Huck and R. D. Juday, eds., Proc. SPIE 1705, 145–154 (1993).
  19. Z. Rahman, R. Alter-Gartenberg, C. L. Fales, and F. O. Huck, “Redundancy reduction in image coding,” in Visual Information Processing II, F. O. Huck and R. D. Juday, eds., Proc. SPIE 1961, 102–112 (1993).
  20. R. Alter-Gartenberg, “Efficient visual communication channels,” J. Math. Imag. Vision 5, 1–18 (1995).
  21. R. Alter-Gartenberg, “Nonlinear dynamic range transformation in visual communication channels,” IEEE Trans. Image Process. 5, 538–546 (1996).
  22. F. O. Huck, C. L. Fales, R. E. Davis, and R. Alter-Gartenberg, “Visual communication with retinex coding,” Appl. Opt. 39, 1711–1730 (2000).
  23. R. Alter-Gartenberg, C. L. Fales, F. O. Huck, and J. A. McCormick, “Image gathering and processing for high-resolution edge detection,” in Progress in Computer Vision and Image Processing, L. Shapiro and A. Rosenfeld, eds. (Academic, New York, 1992), pp. 1–23.
  24. R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1986).
  25. S. E. Reichenbach, S. K. Park, and R. Narayanswamy, “Characterizing digital image acquisition devices,” Opt. Eng. 30, 170–177 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited