OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 11 — Apr. 10, 2000
  • pp: 1799–1814

Three-dimensional image compression with integer wavelet transforms

Ali Bilgin, George Zweig, and Michael W. Marcellin  »View Author Affiliations


Applied Optics, Vol. 39, Issue 11, pp. 1799-1814 (2000)
http://dx.doi.org/10.1364/AO.39.001799


View Full Text Article

Enhanced HTML    Acrobat PDF (1636 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A three-dimensional (3-D) image-compression algorithm based on integer wavelet transforms and zerotree coding is presented. The embedded coding of zerotrees of wavelet coefficients (EZW) algorithm is extended to three dimensions, and context-based adaptive arithmetic coding is used to improve its performance. The resultant algorithm, 3-D CB-EZW, efficiently encodes 3-D image data by the exploitation of the dependencies in all dimensions, while enabling lossy and lossless decompression from the same bit stream. Compared with the best available two-dimensional lossless compression techniques, the 3-D CB-EZW algorithm produced averages of 22%, 25%, and 20% decreases in compressed file sizes for computed tomography, magnetic resonance, and Airborne Visible Infrared Imaging Spectrometer images, respectively. The progressive performance of the algorithm is also compared with other lossy progressive-coding algorithms.

© 2000 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(100.7410) Image processing : Wavelets

History
Original Manuscript: June 30, 1999
Revised Manuscript: November 16, 1999
Published: April 10, 2000

Citation
Ali Bilgin, George Zweig, and Michael W. Marcellin, "Three-dimensional image compression with integer wavelet transforms," Appl. Opt. 39, 1799-1814 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-11-1799


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Wong, L. Zaremba, D. Gooden, H. K. Huang, “Radiologic image compression—a review,” Proc. IEEE 83, 194–219 (1995). [CrossRef]
  2. V. D. Vaughn, T. S. Wilkinson, “System considerations for multispectral image compression designs,” IEEE Signal Process. Mag. 12, 19–31 (1995). [CrossRef]
  3. M. J. Weinberger, G. Seroussi, G. Sapiro, “LOCO-I: a low complexity, context-based lossless image compression algorithm,” in Proceedings of the 1996 IEEE Data Compression Conference (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 140–149.
  4. X. Wu, N. Memon, “CALIC—a context based adaptive lossless image codec,” in Proceedings of the 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1890–1893.
  5. J. Wang, H. K. Huang, “Medical image compression by using three-dimensional wavelet transformation,” IEEE Trans. Med. Imag. 15, 547–554 (1996). [CrossRef]
  6. J. Luo, X. Wang, C. W. Chen, K. J. Parker, “Volumetric medical image compression with three-dimensional wavelet transform and octave zerotree coding,” in Visual Communications and Image Processing ’96, R. Ansari, J. J. Smith, eds., Proc. SPIE2727, 579–590 (1996). [CrossRef]
  7. B. Aiazzi, P. S. Alba, S. Baronti, L. Alparone, “Three-dimensional lossless compression based on a separable generalized recursive interpolation,” in Proceedings of the 1996 IEEE International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 85–88.
  8. M. A. Pratt, C. H. Chu, S. Wong, “Volume compression of MRI data using zerotrees of wavelet coefficients,” in Wavelet Applications in Signal and Image Processing IV, M. A. Unser, A. Aldroubi, A. F. Laine, eds., Proc. SPIE2825, 752–763 (1996). [CrossRef]
  9. A. Baskurt, H. Benoit-Cattin, C. Odet, “On a 3-D medical image coding method using a separable 3-D wavelet transform,” in Medical Imaging 1995: Image Display, Y. Kim, ed., Proc. SPIE2431, 184–194 (1995).
  10. J. A. Saghri, A. G. Tescher, J. T. Reagan, “Practical transform coding of multispectral imagery,” IEEE Signal Process. Mag. 12, 32–43 (1995). [CrossRef]
  11. K. L. Lau, W. K. Vong, W. Y. Ng, “Lossless compression of 3-D images by variable predictive coding,” in Proceedings of the Second Singapore International Conference on Image Processing (World Scientific, Singapore, 1992), pp. 161–165.
  12. A. Zandi, J. D. Allen, E. L. Schwartz, M. Boliek, “CREW: compression with reversible embedded wavelets,” in Proceedings of the 1995 IEEE Data Compression Conference (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 212–221.
  13. A. Said, W. Pearlman, “An image multiresolution representation for lossless and lossy compression,” IEEE Trans. Image Process. 5, 1303–1310 (1996). [CrossRef] [PubMed]
  14. S. Dewitte, J. Cornelis, “Lossless integer wavelet transform,” IEEE Signal Process. Lett. 4, 158–160 (1997). [CrossRef]
  15. R. Calderbank, I. Daubechies, W. Sweldens, B.-L. Yeo, “Wavelet transforms that map integers to integers,” J. Appl. Computa. Harmonics Anal. 5, 332–369 (1998). [CrossRef]
  16. J. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Trans. Signal Process. 41, 3445–3462 (1993). [CrossRef]
  17. M. Vetterli, J. Kovacevic, Wavelets and Subband Coding (Prentice-Hall, Englewood Cliffs, N.J., 1995).
  18. G. Strang, T. Nguyen, Wavelets and Filter Banks (Wellesley-Cambridge Press, Wellesley, Mass., 1996).
  19. E. L. Schwartz, A. Zandi, M. Boliek, “Implementation of compression with reversible embedded wavelets,” in Applications of Digital Image Processing XVIII, A. G. Tescher, ed., Proc. SPIE2564, 32–43 (1995). [CrossRef]
  20. A. Said, W. A. Pearlman, “A new fast and efficient image codec based on set partitioning in hierarchical trees,” IEEE Trans. Circuits Sys. Video Technol. 6, 243–250 (1996). [CrossRef]
  21. Z. Xiong, K. Ramchandran, M. T. Orchard, “Space-frequency quantization for wavelet image coding,” IEEE Trans. Image Process. 6, 1473–1486 (1997).
  22. R. L. Joshi, H. Jafarkani, J. H. Kasner, T. R. Fischer, N. Farvardin, M. W. Marcellin, R. H. Bamberger, “Comparison of different methods of classification in subband coding of images,” IEEE Trans. Image Process. 6, 1473–1486 (1997). [CrossRef] [PubMed]
  23. A. Bilgin, P. J. Sementilli, M. W. Marcellin, “Progressive image coding using trellis coded quantization,” IEEE Trans. Image Process. 8, 1638–1643 (1999). [CrossRef]
  24. I. Daubechies, W. Sweldens, “Factoring wavelet and subband transforms into lifting steps,” J. Fourier Anal. Applica. 4, 245–267 (1998).
  25. E. H. Adelson, E. Simoncelli, R. Hingorani, “Orthogonal pyramid transforms for image coding,” in Visual Communications and Image Processing II, T. R. Hsing, ed., Proc. SPIE845, 50–58 (1987). [CrossRef]
  26. J. W. Woods, T. Naveen, “A filter based bit allocation scheme for subband compression of HDTV,” IEEE Trans. Image Process. 1, 436–440 (1992). [CrossRef] [PubMed]
  27. T. P. O’Rourke, R. L. Stevenson, “Human visual system based wavelet decomposition for image compression,” J. Vis. Commun. Image Represent. 6, 109–121 (1995). [CrossRef]
  28. A. B. Watson, G. Y. Yang, J. A. Solomon, J. Villasenor, “Visibility of wavelet quantization noise,” IEEE Trans. Image Process. 6, 1164–1175 (1997). [CrossRef] [PubMed]
  29. I. H. Witten, R. M. Neal, J. Cleary, “Arithmetic coding for data compression,” Commun. ACM 30, 520–540 (1987). [CrossRef]
  30. J. Li, P.-Y. Chang, C.-C. J. Kuo, “On the improvements of embedded zerotree wavelet (EZW) coding,” in Visual Communications and Image Processing ’95, L. T. Wu, ed., Proc. SPIE2501, 1490–1501 (1995). [CrossRef]
  31. V. T. Franques, V. K. Jain, “Enhanced wavelet-based zerotree coding of images,” in Proceedings of the 1996 IEEE Data Compression Conference (Institute of Electrical and Electronics Engineers, New York, 1996), p. 436.
  32. C. S. Barreto, G. V. Mendonca, “Enhanced zerotree wavelet transform image coding exploiting similarities inside subbands,” in Proceedings of the 1996 IEEE International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 549–551.
  33. X. Wu, J.-H. Chen, “Context modeling and entropy coding of wavelet coefficients for image compression,” in Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 3097–3100.
  34. T. Cover, J. Thomas, Elements of Information Theory (Wiley, New York, 1991). [CrossRef]
  35. J. Rissanen, “Universal coding, information, prediction, and estimation,” IEEE Trans. Inf. Theory 30, 629–636 (1984). [CrossRef]
  36. ftp://carlos.wustl.edu .
  37. http://makalu.jpl.nasa.gov .
  38. Y. Chen, W. A. Pearlman, “Three-dimensional subband coding of video using the zero-tree method,” in Visual Communications and Image Processing ’96, R. Ansari, M. J. Smith, eds., Proc. SPIE2727, 1302–1309 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited