OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 11 — Apr. 10, 2000
  • pp: 1815–1825

Volume-consumption comparisons of free-space and guided-wave optical interconnections

Yao Li and Jan Popelek  »View Author Affiliations


Applied Optics, Vol. 39, Issue 11, pp. 1815-1825 (2000)
http://dx.doi.org/10.1364/AO.39.001815


View Full Text Article

Enhanced HTML    Acrobat PDF (193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We compare volume-consumption characteristics of free-space and guided-wave optical interconnections. System volume consumption is used as a fundamental measure of various point-to-point space-invariant and space-variant interconnections of two-dimensional arrays of N1/2 × N1/2 points. We show that, in free-space and space-invariant situations, although volume consumption for macroaperture optics is O1(N3/2), where O denotes the order, it is only O2(N) for microaperture optics. For free-space and space-variant operations only microaperture optics is possible without fundamental power losses. The corresponding minimum volume consumption is O3(N3). We show that single microaperture-per-channel implementations of either space-invariant or space-variant operations are, in general, more volume efficient than are their two-cascade microaperture-per-channel counterparts. We also show that, for minimizing volume consumption, the optimum relative apertures F#opt for space-variant optical elements are, respectively, (5N)1/2/4 for a single microaperture-per-channel geometry and (5N)1/2/2 for a two-cascade microaperture-per-channel geometry. In guided-wave or fiber interconnect cases our study shows that the volume consumption for space-invariant and space-variant operations is O4(N), with O4 < O2, and O5(N3/2), respectively. Thus an important conclusion of the study is that free-space optics is less volume efficient than is guided-wave optics in both space-invariant and space-variant interconnect applications.

© 2000 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(130.3120) Integrated optics : Integrated optics devices
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects
(200.4960) Optics in computing : Parallel processing

History
Original Manuscript: June 25, 1999
Revised Manuscript: November 3, 1999
Published: April 10, 2000

Citation
Yao Li and Jan Popelek, "Volume-consumption comparisons of free-space and guided-wave optical interconnections," Appl. Opt. 39, 1815-1825 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-11-1815

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited