OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 11 — Apr. 10, 2000
  • pp: 1815–1825

Volume-consumption comparisons of free-space and guided-wave optical interconnections

Yao Li and Jan Popelek  »View Author Affiliations


Applied Optics, Vol. 39, Issue 11, pp. 1815-1825 (2000)
http://dx.doi.org/10.1364/AO.39.001815


View Full Text Article

Enhanced HTML    Acrobat PDF (193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We compare volume-consumption characteristics of free-space and guided-wave optical interconnections. System volume consumption is used as a fundamental measure of various point-to-point space-invariant and space-variant interconnections of two-dimensional arrays of N1/2 × N1/2 points. We show that, in free-space and space-invariant situations, although volume consumption for macroaperture optics is O1(N3/2), where O denotes the order, it is only O2(N) for microaperture optics. For free-space and space-variant operations only microaperture optics is possible without fundamental power losses. The corresponding minimum volume consumption is O3(N3). We show that single microaperture-per-channel implementations of either space-invariant or space-variant operations are, in general, more volume efficient than are their two-cascade microaperture-per-channel counterparts. We also show that, for minimizing volume consumption, the optimum relative apertures F#opt for space-variant optical elements are, respectively, (5N)1/2/4 for a single microaperture-per-channel geometry and (5N)1/2/2 for a two-cascade microaperture-per-channel geometry. In guided-wave or fiber interconnect cases our study shows that the volume consumption for space-invariant and space-variant operations is O4(N), with O4 < O2, and O5(N3/2), respectively. Thus an important conclusion of the study is that free-space optics is less volume efficient than is guided-wave optics in both space-invariant and space-variant interconnect applications.

© 2000 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(130.3120) Integrated optics : Integrated optics devices
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects
(200.4960) Optics in computing : Parallel processing

History
Original Manuscript: June 25, 1999
Revised Manuscript: November 3, 1999
Published: April 10, 2000

Citation
Yao Li and Jan Popelek, "Volume-consumption comparisons of free-space and guided-wave optical interconnections," Appl. Opt. 39, 1815-1825 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-11-1815


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. Athale, “Optical interconnections for vlsi systems,” Proc. IEEE 72, 850–866 (1984). [CrossRef]
  2. F. E. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991). [CrossRef]
  3. D. A. B. Miller, “Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters,” Opt. Lett. 14, 146–148 (1989). [CrossRef] [PubMed]
  4. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical imaging applied to microelectronic chip-to-chip interconnections,” Appl. Opt. 24, 2851–2858 (1985). [CrossRef] [PubMed]
  5. H. M. Ozaktas, J. W. Goodman, “Lower bound for the communication volume required for an optically interconnected array of points,” J. Opt. Soc. Am. A 7, 2100–2106 (1990). [CrossRef]
  6. K. S. Urquhart, P. Marchand, Y. Fainman, S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Appl. Opt. 33, 3670–3682 (1994). [CrossRef] [PubMed]
  7. H. M. Ozaktas, H. Urey, A. W. Lohmann, “Scaling of diffractive and refractive lenses for optical computing and interconnections,” Appl. Opt. 33, 3782–3789 (1994). [CrossRef] [PubMed]
  8. N. Davidson, A. A. Friesem, E. Hasman, “On the limits of optical interconnects,” Appl. Opt. 31, 5426–5430 (1992). [CrossRef] [PubMed]
  9. A. W. Lohmann, “Scaling laws for lens systems,” Appl. Opt. 28, 4996–4998 (1989). [CrossRef] [PubMed]
  10. M. R. Feldman, C. C. Guest, “Interconnect density capabilities of computer generated holograms for optical interconnection of very large scale integrated circuits,” Appl. Opt. 28, 3134–3137 (1989). [CrossRef] [PubMed]
  11. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 2, pp. 4–29.
  12. F. C. Allard, Fiber Optics Handbook (McGraw-Hill, New York, 1989), Chap. 1, pp. 1–50.
  13. M. A. Paesler, P. J. Moyer, Near-Field Optics (Wiley, New York, 1996), Chap. 3, pp. 33–66.
  14. H. F. Ghaemi, Y. Li, T. Thio, T. Wang, “Fiber image guide with subwavelength resolution,” Appl. Phys. Lett. 72, 1137–1139 (1998). [CrossRef]
  15. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, C. Ferreira, “About the space–bandwidth product of optical signals and systems,” J. Opt. Am. Soc. A 13, 470–473 (1996). [CrossRef]
  16. W. V. Schempp, “Fiber optic imaging: an introduction,” in SPIE Short Course Notes-SC33 (SPIE, Bellingham, Wash., 1995).
  17. Y. Li, T. Wang, H. Kosaka, S. Kawai, K. Kasahara, “Fiber-image-guide-based bit-parallel optical interconnects,” Appl. Opt. 35, 6920–6933 (1996). [CrossRef] [PubMed]
  18. H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997). [CrossRef]
  19. K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997). [CrossRef]
  20. J. Ai, Y. Li, “Polymer fiber-image-guide–based embedded optical circuit board,” Appl. Opt. 38, 325–332 (1999). [CrossRef]
  21. C.-L. Wu, T. Y. Feng, Tutorial: Interconnection Networks for Parallel and Distributed Processing (IEEE Computer Society Press, Piscataway, N.J., 1984), Chap. 3.
  22. F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, R. A. Novotny, H. S. Hinton, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” Appl. Opt. 33, 1601–1618 (1994). [CrossRef] [PubMed]
  23. H. M. Ozaktas, D. Mendlovic, “Multistage optical interconnection architectures with the least possible growth of system size,” Opt. Lett. 18, 296–298 (1993). [CrossRef] [PubMed]
  24. G. Onal, A. Altintas, H. M. Ozaktas, “Computer-aided analysis and simulation of complex passive integrated optical circuits of arbitrary rectilinear topology,” Opt. Eng. 33, 1696–1603 (1994). [CrossRef]
  25. M. W. Haney, M. Christensen, “Sliding banyan network,” J. Lightwave Technol. 14, 765–774 (1996). [CrossRef]
  26. J. Popelek, Y. Li, “Free-space-fiber hybrid distributed optical cross-connect interconnect module,” Opt. Lett. 24, 142–144 (1999). [CrossRef]
  27. J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989). [CrossRef] [PubMed]
  28. Y. Li, “Some fundamental issues of optical interconnects,” in Advances in Electronic Packaging 1997, E. Suhir, Y. C. Lee, eds. (AMSE Publishing, New York, 1997), pp. 793–802.
  29. D. Gabor, “Light and information,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, The Netherlands, 1961), Vol. 1, pp. 109–153. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited