Wave Optics Simulation of Atmospheric Turbulence and Reflective Speckle Effects in CO_{2} Lidar
Applied Optics, Vol. 39, Issue 12, pp. 1857-1871 (2000)
http://dx.doi.org/10.1364/AO.39.001857
Acrobat PDF (3639 KB)
Abstract
Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. We present a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. Our simulation is based on implementing a Huygens–Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, are used to simulate the effect of atmospheric turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. We compare the output of our numerical model with separate CO<sub>2</sub> lidar measurements of atmospheric turbulence and reflective speckle. We also compare the output of our model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement was found between the model and the experimental data. Good agreement was also found with analytical predictions. Finally, we present results of a simulation of the combined effects on a finite-aperture lidar system that are qualitatively consistent with previous experimental observations of increasing rms noise with increasing turbulence level.
© 2000 Optical Society of America
OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(030.6140) Coherence and statistical optics : Speckle
Citation
Douglas H. Nelson, Donald L. Walters, Edward P. MacKerrow, Mark J. Schmitt, Charles R. Quick, William M. Porch, and Roger R. Petrin, "Wave Optics Simulation of Atmospheric Turbulence and Reflective Speckle Effects in CO_{2} Lidar," Appl. Opt. 39, 1857-1871 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-12-1857
Sort: Year | Journal | Reset
References
- R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley-Interscience, New York, 1984).
- R. M. Measures, Laser Remote Chemical Analysis (Wiley, New York, 1988).
- E. D. Hinkley, ed., Laser Monitoring of the Atmosphere (Springer-Verlag, New York, 1976).
- W. B. Grant, R. H. Kagann, and W. A. McClenny, “Optical remote measurements of toxic gases,” J. Air Waste Manage. Assoc. 42, 18–30 (1992).
- W. B. Grant, J. S. Margolis, A. M. Brothers, and D. M. Tratt, “CO_{2} DIAL measurements of water vapor,” Appl. Opt. 26, 3033–3042 (1987).
- The reader is encouraged to explore the web site compiled by W. B. Grant on lidar publications at http://w3.osa.org/HOMES/GENERAL/BIBLIO/lidar97.html.
- E. R. Murray and J. E. van der Laan, “Remote measurement of ethylene using a CO_{2} differential-absorption lidar,” Appl. Opt. 17, 814–817 (1978).
- W. B. Grant, “He–Ne and cw CO_{2} laser long-path systems for gas detection,” Appl. Opt. 25, 709–719 (1986).
- A. Dabas, P. H. Flamant, and P. Salamitou, “Characterization of pulsed coherent Doppler lidar with the speckle effect,” Appl. Opt. 33, 6524–6532 (1994).
- R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
- S. R. Murty, “Aerosol speckle effects on atmospheric pulsed lidar backscattered signals,” Appl. Opt. 28, 875–878 (1989).
- V. I. Tatarski, Wave Propagation in a Turbulent Medium, translated by R. A. Silverman (McGraw-Hill, New York, 1961).
- R. R. Beland, “Propagation through atmospheric turbulence,” in The Infrared Electro-Optical Systems Handbook, J. S. Accetta and D. L. Shumaker, eds., Vol. PM10 of the SPIE Press Monographs Series (SPIE, Bellingham, Wash., 1993), pp. 157–232.
- R. L. Fante, “Electromagnetic beam propagation in a turbulent media,” Proc. IEEE 63, 1669–1692 (1975).
- A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, New York, 1997).
- A. Ishimaru, “The beam wave case and remote sensing,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer-Verlag, New York, 1978), pp. 129–170.
- T. Chiba, “Spot dancing of the laser beam propagated through the turbulent atmosphere,” Appl. Opt. 10, 2456–2461 (1971).
- G. Parry, “Measurement of atmospheric turbulence induced intensity fluctuations in a laser beam,” Opt. Acta 28, 715–728 (1981).
- D. L. Fried, G. E. Mevers, and M. P. Keister, “Measurements of laser beam scintillation in the atmosphere,” J. Opt. Soc. Am. 57, 787–797 (1967).
- J. W. Goodman, “Some effects of target-induced scintillation on optical radar performance,” Proc. IEEE 53, 1688–1700 (1965).
- J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, 2nd ed., J. Dainty, ed. (Springer-Verlag, New York, 1984), pp. 9–75.
- P. H. Flamant, R. T. Menzies, and M. J. Kavaya, “Evidence for speckle effects on pulsed CO_{2} lidar signal returns from remote targets,” Appl. Opt. 23, 1412–1417 (1984).
- R. R. Petrin, D. H. Nelson, M. J. Schmitt, C. R. Quick, J. J. Tiee, and M. C. Whitehead, “Atmospheric effects on CO_{2} differential absorption lidar sensitivity,” in Gas and Chemical Lasers, R. Sze, ed., Proc. SPIE 2702, 28–39 (1996).
- D. H. Nelson, R. R. Petrin, E. P. MacKerrow, M. J. Schmitt, C. R. Quick, A. Zardecki, W. M. Porch, M. C. Whitehead, and D. L. Walters, “Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO_{2} differential absorption LIDAR (DIAL),” in Airborne Laser Advanced Technology, T. D. Steiner and P. H. Merritt, eds., Proc. SPIE 3381, 147–158 (1998).
- E. Durieux and L. Fiorani, “Measurement of the lidar signal fluctuation with a shot-per-shot instrument,” Appl. Opt. 37, 7128–7131 (1998).
- J. F. Holmes, “Speckle propagation through turbulence: its characteristics and effects,” in Laser Beam Propagation in the Atmosphere, J. C. Leader, ed., Proc. SPIE 410, 89–97 (1983).
- J. H. Churnside, “Aperture averaging of optical scintillations in the turbulent atmosphere,” Appl. Opt. 30, 1982–1994 (1991).
- M. J. T. Milton and P. T. Woods, “Pulse averaging methods for a laser remote monitoring system using atmospheric backscatter,” Appl. Opt. 26, 2598–2603 (1987).
- E. P. MacKerrow, M. J. Schmitt, and D. C. Thompson, “Effect of speckle on lidar pulse-pair ratio statistics,” Appl. Opt. 36, 8650–8669 (1997).
- N. Menyuk, D. K. Killinger, and C. R. Menyuk, “Error reduction in laser remote sensing: combined effects of cross correlation and signal averaging,” Appl. Opt. 24, 118–131 (1985).
- C. A. Davis and D. L. Walters, “Atmospheric inner-scale effects on normalized irradiance variance,” Appl. Opt. 33, 8406–8411 (1994).
- J. M. Martin and S. M. Flatté, “Simulation of point-source scintillation through three-dimensional random media,” J. Opt. Soc. Am. A 7, 838–847 (1990).
- M. Z. M. Jenu and D. H. O. Bebbingtion, “Intensity scintillation index of finite beam optical propagation in a turbulent atmosphere,” Electron. Lett. 30, 582–583 (1994).
- M. Tur, “Numerical solutions for the fourth moment of a finite beam propagating in a random medium,” J. Opt. Soc. Am. A 2, 2161–2170 (1985).
- G. Welch and R. Phillips, “Simulation of enhanced backscatter by a phase screen,” J. Opt. Soc. Am. A 7, 578–584 (1990).
- D. G. Youmans and G. A. Hart, “Numerical evaluation of the “M” parameter for direct detection ladar,” in Laser Radar Technology and Applications III, G. W. Kamerman, ed., Proc. SPIE 3380, 176–187 (1998).
- H. Fujii, J. Uozumi, and T. Asakura, “Computer simulation study of image speckle patterns with relation to object surface profile,” J. Opt. Soc. Am. 66, 1222–1236 (1976).
- D. G. Youmans and V. S. R. Gudimetla, “Round-trip turbulence scintillation effects on laser radar: Monte Carlo simulation results for unresolved targets,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE 3065, 71–83 (1997).
- C. A. Davis, “Computer simulation of wave propagation through turbulent media,” Ph.D. dissertation (Naval Postgraduate School, Monterey, Calif., 1994).
- M. V. Klein and T. E. Furtak, Optics (Wiley, New York, 1986).
- J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
- D. L. Knepp, “Multiple phase-screen calculation of the temporal behavior of stochastic waves,” Proc. IEEE 71, 722–737 (1983).
- J. M. Martin and S. M. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27, 2111–2126 (1988).
- R. E. Hufnagel, “Propagation through atmospheric turbulence,” in The Infrared Handbook, W. L. Wolfe and G. J. Zissis, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1985), pp. 6–1–6–56.
- J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
- S. M. Flatté, C. Bracher, and G. Y. Wang, “Probability-density functions of irradiance for waves in atmospheric turbulence calculated by numerical simulation,” J. Opt. Soc. Am. A 11, 2080–2092 (1994).
- F. G. Gebhard, “High power laser propagation,” Appl. Opt. 15, 1479–1493 (1976).
- D. L. Fried, “Optical resolution through a randomly inhomogeneous medium,” J. Opt. Soc. Am. 56, 1372–1379 (1966).
- D. L. Walters, “Atmospheric modulation transfer function for desert and mountain locations: r_{0} measurements,” J. Opt. Soc. Am. 71, 406–409 (1981).
- T. Wang, G. R. Ochs, and S. F. Clifford, “A saturation-resistant optical scintillometer to measure C_{n}^{2},” J. Opt. Soc. Am. 68, 334–338 (1978).
- H. T. Yura, “Atmospheric turbulence induced laser beam spread,” Appl. Opt. 10, 2771–2773 (1971).
- W. B. Miller, J. C. Ricklin, and L. C. Andrews, “Log-amplitude variance and wave structure function: a new perspective for Gaussian beams,” J. Opt. Soc. Am. A 10, 661–672 (1993).
- E. P. MacKerrow and M. J. Schmitt, “Measurement of integrated speckle statistics for CO_{2} lidar returns from a moving, nonuniform, hard target,” Appl. Opt. 36, 6921–6937 (1997).
- J. C. Russ, The Image Processing Handbook (CRC Press, Boca Raton, Fla., 1992).
- P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York, 1992).
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
OSA is a member of CrossRef.