OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 12 — Apr. 20, 2000
  • pp: 1857–1871

Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar

Douglas H. Nelson, Donald L. Walters, Edward P. MacKerrow, Mark J. Schmitt, Charles R. Quick, William M. Porch, and Roger R. Petrin  »View Author Affiliations

Applied Optics, Vol. 39, Issue 12, pp. 1857-1871 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (3639 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. We present a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. Our simulation is based on implementing a Huygens–Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, are used to simulate the effect of atmospheric turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. We compare the output of our numerical model with separate CO2 lidar measurements of atmospheric turbulence and reflective speckle. We also compare the output of our model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement was found between the model and the experimental data. Good agreement was also found with analytical predictions. Finally, we present results of a simulation of the combined effects on a finite-aperture lidar system that are qualitatively consistent with previous experimental observations of increasing rms noise with increasing turbulence level.

© 2000 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(030.6140) Coherence and statistical optics : Speckle

Original Manuscript: April 14, 1999
Revised Manuscript: October 5, 1999
Published: April 20, 2000

Douglas H. Nelson, Donald L. Walters, Edward P. MacKerrow, Mark J. Schmitt, Charles R. Quick, William M. Porch, and Roger R. Petrin, "Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar," Appl. Opt. 39, 1857-1871 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley-Interscience, New York, 1984).
  2. R. M. Measures, Laser Remote Chemical Analysis (Wiley, New York, 1988).
  3. E. D. Hinkley, ed., Laser Monitoring of the Atmosphere (Springer-Verlag, New York, 1976). [CrossRef]
  4. W. B. Grant, R. H. Kagann, W. A. McClenny, “Optical remote measurements of toxic gases,” J. Air Waste Manage. Assoc. 42, 18–30 (1992). [CrossRef] [PubMed]
  5. W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033–3042 (1987). [CrossRef] [PubMed]
  6. The reader is encouraged to explore the web site compiled by W. B. Grant on lidar publications at http://w3.osa.org/HOMES/GENERAL/BIBLIO/lidar97.html .
  7. E. R. Murray, J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential-absorption lidar,” Appl. Opt. 17, 814–817 (1978). [CrossRef] [PubMed]
  8. W. B. Grant, “He–Ne and cw CO2 laser long-path systems for gas detection,” Appl. Opt. 25, 709–719 (1986). [CrossRef] [PubMed]
  9. A. Dabas, P. H. Flamant, P. Salamitou, “Characterization of pulsed coherent Doppler lidar with the speckle effect,” Appl. Opt. 33, 6524–6532 (1994). [CrossRef] [PubMed]
  10. R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974). [CrossRef]
  11. S. R. Murty, “Aerosol speckle effects on atmospheric pulsed lidar backscattered signals,” Appl. Opt. 28, 875–878 (1989). [CrossRef] [PubMed]
  12. V. I. Tatarski, Wave Propagation in a Turbulent Medium, translated by R. A. Silverman (McGraw-Hill, New York, 1961).
  13. R. R. Beland, “Propagation through atmospheric turbulence,” in The Infrared Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, eds., Vol. PM10 of the SPIE Press Monographs Series (SPIE, Bellingham, Wash., 1993), pp. 157–232.
  14. R. L. Fante, “Electromagnetic beam propagation in a turbulent media,” Proc. IEEE 63, 1669–1692 (1975). [CrossRef]
  15. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, New York, 1997).
  16. A. Ishimaru, “The beam wave case and remote sensing,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer-Verlag, New York, 1978), pp. 129–170. [CrossRef]
  17. T. Chiba, “Spot dancing of the laser beam propagated through the turbulent atmosphere,” Appl. Opt. 10, 2456–2461 (1971). [CrossRef] [PubMed]
  18. G. Parry, “Measurement of atmospheric turbulence induced intensity fluctuations in a laser beam,” Opt. Acta 28, 715–728 (1981). [CrossRef]
  19. D. L. Fried, G. E. Mevers, M. P. Keister, “Measurements of laser beam scintillation in the atmosphere,” J. Opt. Soc. Am. 57, 787–797 (1967). [CrossRef]
  20. J. W. Goodman, “Some effects of target-induced scintillation on optical radar performance,” Proc. IEEE 53, 1688–1700 (1965). [CrossRef]
  21. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, 2nd ed., J. Dainty, ed. (Springer-Verlag, New York, 1984), pp. 9–75.
  22. P. H. Flamant, R. T. Menzies, M. J. Kavaya, “Evidence for speckle effects on pulsed CO2 lidar signal returns from remote targets,” Appl. Opt. 23, 1412–1417 (1984). [CrossRef]
  23. R. R. Petrin, D. H. Nelson, M. J. Schmitt, C. R. Quick, J. J. Tiee, M. C. Whitehead, “Atmospheric effects on CO2 differential absorption lidar sensitivity,” in Gas and Chemical Lasers, R. Sze, ed., Proc. SPIE2702, 28–39 (1996). [CrossRef]
  24. D. H. Nelson, R. R. Petrin, E. P. MacKerrow, M. J. Schmitt, C. R. Quick, A. Zardecki, W. M. Porch, M. C. Whitehead, D. L. Walters, “Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 differential absorption LIDAR (DIAL),” in Airborne Laser Advanced Technology, T. D. Steiner, P. H. Merritt, eds., Proc. SPIE3381, 147–158 (1998). [CrossRef]
  25. E. Durieux, L. Fiorani, “Measurement of the lidar signal fluctuation with a shot-per-shot instrument,” Appl. Opt. 37, 7128–7131 (1998). [CrossRef]
  26. J. F. Holmes, “Speckle propagation through turbulence: its characteristics and effects,” in Laser Beam Propagation in the Atmosphere, J. C. Leader, ed., Proc. SPIE410, 89–97 (1983). [CrossRef]
  27. J. H. Churnside, “Aperture averaging of optical scintillations in the turbulent atmosphere,” Appl. Opt. 30, 1982–1994 (1991). [CrossRef] [PubMed]
  28. M. J. T. Milton, P. T. Woods, “Pulse averaging methods for a laser remote monitoring system using atmospheric backscatter,” Appl. Opt. 26, 2598–2603 (1987). [CrossRef] [PubMed]
  29. E. P. MacKerrow, M. J. Schmitt, D. C. Thompson, “Effect of speckle on lidar pulse-pair ratio statistics,” Appl. Opt. 36, 8650–8669 (1997). [CrossRef]
  30. N. Menyuk, D. K. Killinger, C. R. Menyuk, “Error reduction in laser remote sensing: combined effects of cross correlation and signal averaging,” Appl. Opt. 24, 118–131 (1985). [CrossRef] [PubMed]
  31. C. A. Davis, D. L. Walters, “Atmospheric inner-scale effects on normalized irradiance variance,” Appl. Opt. 33, 8406–8411 (1994). [CrossRef] [PubMed]
  32. J. M. Martin, S. M. Flatté, “Simulation of point-source scintillation through three-dimensional random media,” J. Opt. Soc. Am. A 7, 838–847 (1990). [CrossRef]
  33. M. Z. M. Jenu, D. H. O. Bebbingtion, “Intensity scintillation index of finite beam optical propagation in a turbulent atmosphere,” Electron. Lett. 30, 582–583 (1994). [CrossRef]
  34. M. Tur, “Numerical solutions for the fourth moment of a finite beam propagating in a random medium,” J. Opt. Soc. Am. A 2, 2161–2170 (1985). [CrossRef]
  35. G. Welch, R. Phillips, “Simulation of enhanced backscatter by a phase screen,” J. Opt. Soc. Am. A 7, 578–584 (1990). [CrossRef]
  36. D. G. Youmans, G. A. Hart, “Numerical evaluation of the “M” parameter for direct detection ladar,” in Laser Radar Technology and Applications III, G. W. Kamerman, ed., Proc. SPIE3380, 176–187 (1998). [CrossRef]
  37. H. Fujii, J. Uozumi, T. Asakura, “Computer simulation study of image speckle patterns with relation to object surface profile,” J. Opt. Soc. Am. 66, 1222–1236 (1976). [CrossRef]
  38. D. G. Youmans, V. S. R. Gudimetla, “Round-trip turbulence scintillation effects on laser radar: Monte Carlo simulation results for unresolved targets,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE3065, 71–83 (1997). [CrossRef]
  39. C. A. Davis, “Computer simulation of wave propagation through turbulent media,” Ph.D. dissertation (Naval Postgraduate School, Monterey, Calif., 1994).
  40. M. V. Klein, T. E. Furtak, Optics (Wiley, New York, 1986).
  41. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  42. D. L. Knepp, “Multiple phase-screen calculation of the temporal behavior of stochastic waves,” Proc. IEEE 71, 722–737 (1983). [CrossRef]
  43. J. M. Martin, S. M. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27, 2111–2126 (1988). [CrossRef] [PubMed]
  44. R. E. Hufnagel, “Propagation through atmospheric turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1985), pp. 6-1–6-56.
  45. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  46. S. M. Flatté, C. Bracher, G. Y. Wang, “Probability-density functions of irradiance for waves in atmospheric turbulence calculated by numerical simulation,” J. Opt. Soc. Am. A 11, 2080–2092 (1994). [CrossRef]
  47. F. G. Gebhard, “High power laser propagation,” Appl. Opt. 15, 1479–1493 (1976). [CrossRef]
  48. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium,” J. Opt. Soc. Am. 56, 1372–1379 (1966). [CrossRef]
  49. D. L. Walters, “Atmospheric modulation transfer function for desert and mountain locations: r0 measurements,” J. Opt. Soc. Am. 71, 406–409 (1981). [CrossRef]
  50. T. Wang, G. R. Ochs, S. F. Clifford, “A saturation-resistant optical scintillometer to measure Cn2,” J. Opt. Soc. Am. 68, 334–338 (1978). [CrossRef]
  51. H. T. Yura, “Atmospheric turbulence induced laser beam spread,” Appl. Opt. 10, 2771–2773 (1971). [CrossRef] [PubMed]
  52. W. B. Miller, J. C. Ricklin, L. C. Andrews, “Log-amplitude variance and wave structure function: a new perspective for Gaussian beams,” J. Opt. Soc. Am. A 10, 661–672 (1993). [CrossRef]
  53. E. P. MacKerrow, M. J. Schmitt, “Measurement of integrated speckle statistics for CO2 lidar returns from a moving, nonuniform, hard target,” Appl. Opt. 36, 6921–6937 (1997). [CrossRef]
  54. J. C. Russ, The Image Processing Handbook (CRC Press, Boca Raton, Fla., 1992).
  55. P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited