OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 12 — Apr. 20, 2000
  • pp: 1879–1892

Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: experiment

Detlef Müller, Frank Wagner, Ulla Wandinger, Albert Ansmann, Manfred Wendisch, Dietrich Althausen, and Wolfgang von Hoyningen-Huene  »View Author Affiliations

Applied Optics, Vol. 39, Issue 12, pp. 1879-1892 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (311 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present effective radius, volume, surface-area, and number concentrations as well as mean complex refractive index of tropospheric particle size distributions based on lidar measurements at six wavelengths. The parameters are derived by means of an inversion algorithm that has been specifically designed for the inversion of available optical data sets. The data were taken on 20 June and on 20 July 1997 during the Aerosol Characterization Experiment ACE 2 (North Atlantic/Portugal) and on 9 August 1998 during the Lindenberg Aerosol Characterization Experiment LACE 98 (Lindenberg/Germany). Measurements on 20 June 1997 were taken in a clean-marine boundary layer, and a large value of 0.64 µm for the effective radius, a low value of 1.45 for the real part, and a negligible imaginary part of the complex refractive index were found. The single-scatter albedo was 0.98 at 532 nm. It was derived from the particle parameters with Mie-scattering calculations. In contrast, the particles were less than 0.2 µm in effective radius in a continental-polluted aerosol layer on 20 July 1997. The real part of the complex refractive index was ∼1.6; the imaginary part showed values near 0.03i. The single-scatter albedo was 0.84. On 9 August 1998 an elevated particle layer located from 3000 to 6000 m was observed, which had originated from an area of biomass burning in northwestern Canada. Here the effective radius was ∼0.24 µm, the real part of the complex refractive index was above 1.6, the imaginary part was ∼0.04i, and the single-scatter albedo was 0.81. Excellent agreement has been found with results based on sunphotometer and in situ measurements that were performed during the field campaigns.

© 2000 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(100.0100) Image processing : Image processing
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.0290) Scattering : Scattering

Original Manuscript: July 7, 1999
Revised Manuscript: December 17, 1999
Published: April 20, 2000

Detlef Müller, Frank Wagner, Ulla Wandinger, Albert Ansmann, Manfred Wendisch, Dietrich Althausen, and Wolfgang von Hoyningen-Huene, "Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: experiment," Appl. Opt. 39, 1879-1892 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Müller, U. Wandinger, A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999). [CrossRef]
  2. D. Müller, U. Wandinger, A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38, 2358–2368 (1999). [CrossRef]
  3. D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, S. Zörner, E. Clauder, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Oceanic Technol. (to be published).
  4. A. N. Tikhonov, V. Y. Arsenin, eds., Solution of Ill-Posed Problems (Wiley, New York, 1977).
  5. G. H. Golub, M. Heath, G. Wahba, “Generalized cross-validation as a method for choosing a good ridge parameter,” Technometrics 21, 215–223 (1979). [CrossRef]
  6. P. Craven, G. Wahba, “Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation,” Numer. Math. 31, 377–403 (1979). [CrossRef]
  7. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  8. J. Heintzenberg, H. Müller, H. Quenzel, E. Thomalla, “Information content of optical data with respect to aerosol properties: numerical studies with a randomized minimization-search-technique inversion algorithm,” Appl. Opt. 20, 1308–1315 (1981). [CrossRef] [PubMed]
  9. P. Qing, H. Nakane, Y. Sasano, S. Kitamura, “Numerical simulation of the retrieval of aerosol size distribution from multiwavelength laser radar measurements,” Appl. Opt. 28, 5259–5265 (1989). [CrossRef] [PubMed]
  10. B. Stein, M. Del Guasta, J. Kolenda, M. Morandi, P. Rairoux, L. Stefanutti, J. P. Wolf, L. Wöste, “Stratospheric aerosol size distribution from multispectral lidar measurements at Sodankylä during EASOE,” Geophys. Res. Lett. 21, 1311–1314 (1994). [CrossRef]
  11. J. Kolenda, B. Mielke, P. Rairoux, B. Stein, D. Weidauer, J. P. Wolf, L. Wöste, F. Castagnoli, M. Del Guasta, M. Morandi, V. M. Sacco, L. Stefanutti, V. Venturi, L. Zuccagnoli, “Aerosol size distribution measurements using a multispectral lidar-system,” in Lidar for Remote Sensing, R. J. Becherer, R. M. Hardesty, J. P. Meyzonette, eds., Proc. SPIE1714, 208–219 (1992). [CrossRef]
  12. T. Deshler, B. J. Johnson, W. R. Rozier, “Balloonborne measurements of Pinatubo aerosol during 1991 and 1992 at 41 °N: vertical profiles, size distribution, and volatility,” Geophys. Res. Lett. 20, 1435–1438 (1993). [CrossRef]
  13. J. D. Lindberg, J. B. Gillespie, “Relationship between particle size and imaginary refractive index in the atmospheric dust,” Appl. Opt. 16, 2628–2630 (1977). [CrossRef] [PubMed]
  14. E. M. Patterson, “Atmospheric extinction between 0.55 µm and 10.6 µm due to soil-derived aerosols,” Appl. Opt. 16, 2414–2418 (1977). [CrossRef] [PubMed]
  15. E. M. Patterson, D. A. Gillette, B. H. Stockton, “Complex index of refraction between 300 and 700 nm for Saharan aerosols,” J. Geophys. Res. 82, 3153–3160 (1977). [CrossRef]
  16. E. M. Patterson, B. T. Marshall, “Diffuse reflectance and diffuse transmission measurements of aerosol absorption at the First International Workshop on Light Absorption by Aerosol Particles,” Appl. Opt. 21, 387–393 (1982). [CrossRef] [PubMed]
  17. T. Nakajima, M. Tanaka, T. Yamauchi, “Retrieval of the optical properties of aerosols from aureole and extinction data,” Appl. Opt. 22, 2951–2959 (1983). [CrossRef] [PubMed]
  18. E. M. Patterson, C. K. McMahon, “Absorption characteristics of forest fire particulate matter,” Atmos. Environ. 18, 2541–2551 (1984). [CrossRef]
  19. T. Nakajima, M. Tanaka, M. Yamano, M. Shiobara, K. Arao, Y. Nakanishi, “Aerosol optical characteristics in the yellow sand events observed in May, 1982 at Nagasaki. II. Models,” J. Meteorol. Soc. Jpn. 67, 279–291 (1989).
  20. Y. Sasano, E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt. 28, 1670–1679 (1989). [CrossRef] [PubMed]
  21. T. Hayasaka, T. Nakajima, M. Tanaka, “The coarse particle aerosols in the free troposphere around Japan,” J. Geophys. Res. 95, 14,039–14,047 (1990). [CrossRef]
  22. M. Tanaka, T. Hayasaka, T. Nakajima, “Airborne measurements of optical properties of tropospheric aerosols over an urban area,” J. Meteorol. Soc. Jpn. 68, 335–345 (1990).
  23. J. B. Gillespie, J. D. Lindberg, “Seasonal and geographic variations in imaginary refractive index of atmospheric particulate matter,” Appl. Opt. 31, 2107–2111 (1992). [CrossRef] [PubMed]
  24. J. B. Gillespie, J. D. Lindberg, “Ultraviolet and visible imaginary refractive index of strongly absorbing atmospheric particulate matter,” Appl. Opt. 31, 2112–2115 (1992). [CrossRef] [PubMed]
  25. D. S. Covert, J. Heintzenberg, “Size distribution and chemical properties of aerosol at Ny Ålesund, Svalbard,” Atmos. Environ. 27 Part A 2989–2997 (1993).
  26. I. S. Kristament, J. B. Liley, M. J. Harvey, “Aerosol variability in the vertical in the southwest Pacific,” J. Geophys. Res. 98, 7129–7139 (1994). [CrossRef]
  27. J. D. Lindberg, R. E. Douglass, D. M. Garvey, “Carbon and the optical properties of atmospheric dust,” Appl. Opt. 32, 6077–6086 (1993). [CrossRef] [PubMed]
  28. R. G. Pinnick, G. Fernandez, E. Martinez-Andazola, B. D. Hinds, A. D. A. Hansen, K. Fuller, “Aerosol in the arid southwestern United States: measurements of mass loading, volatility, size distribution, absorption characteristics, black carbon content, and vertical structure to 7 km above sea level,” J. Geophys. Res. 98, 2651–2666 (1994). [CrossRef]
  29. Y. J. Kaufman, A. Gitelson, A. Karnieli, E. Ganor, R. S. Fraser, T. Nakajima, S. Mattoo, B. N. Holben, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10,341–10,356 (1994). [CrossRef]
  30. P. K. Koutsenogii, R. Jaenicke, “Number concentration and size distribution of atmospheric aerosol in Siberia,” J. Aerosol Sci. 25, 377–383 (1994). [CrossRef]
  31. R. F. Pueschel, J. M. Livingston, G. V. Ferry, T. E. DeFelice, “Aerosol abundances and optical characteristics in the Pacific Basin free troposphere,” Atmos. Environ. 28, 951–960 (1994). [CrossRef]
  32. C. Liu, “Humidity effect on the aerosol particle spectra in the atmospheric boundary layer,” J. Aerosol Sci. 26, 489–495 (1995). [CrossRef]
  33. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992). [CrossRef] [PubMed]
  34. J. T. Kiel, B. P. Briegleb, “The relative roles of sulfate aerosols and greenhouse gases,” Science 260, 311–314 (1993). [CrossRef]
  35. J. E. Penner, R. E. Dickinson, C. A. O’Neill, “Effects of aerosols from biomass burning on the global radiation budget,” Science 256, 1432–1434 (1992). [CrossRef] [PubMed]
  36. R. J. Charlson, J. Heintzenberg, eds., Aerosol Forcing of Climate (Wiley, Chichester, UK, 1995).
  37. T. R. Karl, P. D. Jones, R. W. Knight, G. Kukla, N. Plummer, V. Razovayev, K. P. Gallo, J. Lindseay, R. J. Charlson, T. C. Peterson, “A new perspective on recent global warming,” Bull. Am. Meteorol. Soc. 74, 1007–1023 (1993). [CrossRef]
  38. P. V. Hobbs, B. J. Huebert, eds., “Atmospheric aerosols. A new focus of the International Global Atmospheric Chemistry Project (IGAC)” (IGAC Core Project Office, Massachusetts Institute of Technology, Cambridge, Mass., 1996).
  39. J. Heintzenberg, H.-F. Graf, R. J. Charlson, P. Warneck, “Climate forcing and the physico-chemical life cycle of the atmospheric aerosol—Why do we need an integrated interdisciplinary global research programme?” Contrib. Atmos. Phys. 69, 261–271 (1996).
  40. P. K. Quinn, T. L. Anderson, T. S. Bates, R. Dlugi, J. Heintzenberg, W. von Hoyningen-Huene, M. Kulmala, P. B. Russell, E. Swietlicki, “Closure in tropospheric aerosol-climate research: a review and future needs for addressing aerosol direct shortwave radiative forcing,” Contr. Atmos. Phys. 69, 547–577 (1996).
  41. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981). [CrossRef] [PubMed]
  42. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984). [CrossRef] [PubMed]
  43. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985). [CrossRef] [PubMed]
  44. J. A. Cooney, J. Orr, C. Tomasetti, “Measurements separating the gaseous and aerosol components of laser atmospheric backscatter,” Nature 224, 1098–1099 (1969). [CrossRef]
  45. S. H. Melfi, “Remote measurements of the atmosphere using Raman scattering,” Appl. Opt. 11, 1605–1610 (1972). [CrossRef] [PubMed]
  46. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 29, 3266–3272 (1992).
  47. A. Ansmann, M. Riebesell, C. Weitkamp, “Measurements of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990). [CrossRef] [PubMed]
  48. D. Gutkowicz-Krusin, “Multiangle lidar performance in the presence of horizontal inhomogeneities in atmospheric extinction and scattering,” Appl. Opt. 32, 3266–3272 (1993). [CrossRef] [PubMed]
  49. S. Wallenhauer, “Bestimmung spektraler Streukoeffizienten des atmosphärischen Aerosol aus Lidarmessungen,” diploma thesis (Universität Leipzig, Leipzig, Germany, 1998).
  50. S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969). [CrossRef]
  51. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992). [CrossRef]
  52. W. von Hoyningen-Huene, M. Wendisch, “Variability of aerosol optical parameters by advective processes,” Atmos. Environ. 28, 923–933 (1994). [CrossRef]
  53. F. Wagner, “Kombinierte Mehrwellenlängen-Lidar-Photometermessungen von optischen und physikalischen Partikelparametern während ACE-2,” Ph.D. dissertation (Universität Leipzig, Leipzig, Germany, 2000).
  54. M. Wendisch, W. von Hoyningen-Huene, “Optically equivalent refractive index of atmospheric aerosol particles,” Contr. Atmos. Phys. 65, 293–308 (1992).
  55. M. Wendisch, W. von Hoyningen-Huene, “Possibility of refractive index determination of atmospheric aerosol particles by ground-based solar extinction and scattering measurements,” Atmos. Environ. 28, 785–792 (1994). [CrossRef]
  56. P. Posse, W. von Hoyningen-Huene, “New method for retrieval of particle size distribution from combined data of spectral extinction and aureole scattering,” J. Aerosol Sci. 27, S567–S568 (1996). [CrossRef]
  57. M. Wendisch, “Zur Bestimmbarkeit des optisch-äquivalenten komplexen Brechungsindex atmosphärischer Aerosolteilchen aus spektralen Extinktions-und Streulichtmessungen des Sonnenlichts,” Ph.D. dissertation (Universität Leipzig, Leipzig, Germany, 1992).
  58. F. Wagner, Institute for Tropospheric Research, D-04303 Leipzig, Germany (personal communication, 1999).
  59. U. Leiterer, A. Naebert, T. Naebert, G. Alekseeva, “A new star photometer developed for spectral aerosol optical thickness measurements in Lindenberg,” Contrib. Atmos. Phys. 68, 133–141 (1995).
  60. W. v. Hoyningen-Huene, Institut für Fernerkundung, Universität Bremen, D-28334 Bremen, Germany (personal communication, 1998).
  61. Manufactured by Particle Measuring Systems, Inc., Boulder, Colo.
  62. E. O. Knutson, K. T. Whitby, “Aerosol classification by electric mobility: apparatus, theory, and applications,” J. Aerosol. Sci. 6, 443–451 (1975). [CrossRef]
  63. J. K. Agarwal, C. J. Sem, “Continuous flow, single-particle-counting condensation nucleus counter,” J. Aerosol. Sci. 11, 343–357 (1980). [CrossRef]
  64. G. A. d’Almeida, P. Köppke, E. P. Shettle, eds., Atmospheric Aerosols, Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).
  65. P. Köppke, Department of Meteorology, Ludwig-Maximilians-Universität, Munich, Germany (personal communication, 1995).
  66. I. N. Tang, H. R. Munkelwitz, “Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance,” J. Geophys. Res. 99, 18,801–18,808 (1994). [CrossRef]
  67. J. H. Seinfeld, S. N. Pandis, eds., Atmospheric Chemistry and Physics—From Air Pollution to Climate Change (Deepak, Hampton, Va., 1991), p. 1118.
  68. C. Neusüss, Institute for Tropospheric Research, D-04303 Leipzig, Germany (personal communication, 1999).
  69. C. M. Carrico, M. J. Rood, J. A. Ogren, C. Neusüss, A. Wiedensohler, J. Heintzenberg, “Aerosol optical properties at Sagres, Portugal, during ACE 2,” Tellus B (to be published).
  70. Information and respective images may be found on the Internet at http://jwocky.gsfc.nasa.gov/index.html .
  71. N. C. Hsu, J. R. Herman, J. F. Gleason, O. Torres, C. J. Seftor, “Satellite detection of smoke aerosols over a snow/ice surface by TOMS,” Geophys. Res. Lett. 26, 1165–1168 (1999). [CrossRef]
  72. J.-L. Jaffrezo, C. I. Davidson, H. D. Kuhns, M. H. Bergin, R. Hillamo, W. Maenhaut, J. W. Kahl, J. M. Harris, “Biomass burning signatures in the atmosphere of central Greenland,” J. Geophys. Res. 103, 31,067–31,078 (1998). [CrossRef]
  73. B. E. Anderson, W. B. Grant, G. L. Gregory, E. V. Browell, J. E. Collins, G. W. Sachse, D. B. Bagwell, C. H. Hudgins, D. R. Blake, N. J. Blake, “Aerosols from biomass burning over the tropical South Atlantic region: distributions and impacts,” J. Geophys. Res. 101, 24,117–24,137 (1996). [CrossRef]
  74. A. Ansmann, D. Althausen, U. Wandinger, K. Franke, D. Müller, F. Wagner, J. Heintzenberg, “Vertical profiling of the Indian aerosol plume with six-wavelength lidar during INDOEX: a first case study,” Geophys. Res. Lett. 27, 963–966 (2000). [CrossRef]
  75. D. Müller, F. Wagner, D. Althausen, U. Wandinger, A. Ansmann, “Physical properties and radiative impact of Indian aerosol plume derived from 6-wavelength lidar observations on 25 March 1999 of Indian Ocean Experiment,” Geophys. Res. Lett. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited