OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 12 — Apr. 20, 2000
  • pp: 1895–1910

Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions

Jens Reichardt, Michael Hess, and Andreas Macke  »View Author Affiliations


Applied Optics, Vol. 39, Issue 12, pp. 1895-1910 (2000)
http://dx.doi.org/10.1364/AO.39.001895


View Full Text Article

Enhanced HTML    Acrobat PDF (298 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multiple-scattering correction factors for cirrus particle extinction coefficients measured with Raman and high spectral resolution lidars are calculated with a radiative-transfer model. Cirrus particle-ensemble phase functions are computed from single-crystal phase functions derived in a geometrical-optics approximation. Seven crystal types are considered. In cirrus clouds with height-independent particle extinction coefficients the general pattern of the multiple-scattering parameters has a steep onset at cloud base with values of 0.5–0.7 followed by a gradual and monotonic decrease to 0.1–0.2 at cloud top. The larger the scattering particles are, the more gradual is the rate of decrease. Multiple-scattering parameters of complex crystals and of imperfect hexagonal columns and plates can be well approximated by those of projected-area equivalent ice spheres, whereas perfect hexagonal crystals show values as much as 70% higher than those of spheres. The dependencies of the multiple-scattering parameters on cirrus particle spectrum, base height, and geometric depth and on the lidar parameters laser wavelength and receiver field of view, are discussed, and a set of multiple-scattering parameter profiles for the correction of extinction measurements in homogeneous cirrus is provided.

© 2000 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.3640) Atmospheric and oceanic optics : Lidar
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.1090) Scattering : Aerosol and cloud effects
(290.1350) Scattering : Backscattering
(290.4210) Scattering : Multiple scattering
(290.5860) Scattering : Scattering, Raman

History
Original Manuscript: August 11, 1999
Revised Manuscript: January 21, 2000
Published: April 20, 2000

Citation
Jens Reichardt, Michael Hess, and Andreas Macke, "Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions," Appl. Opt. 39, 1895-1910 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-12-1895


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986). [CrossRef]
  2. S. Twomey, “Aerosols, clouds and radiation,” Atmos. Environ. 25, 2435–2442 (1991). [CrossRef]
  3. G. L. Stephens, S. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1753 (1990). [CrossRef]
  4. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983). [CrossRef] [PubMed]
  5. A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990). [CrossRef] [PubMed]
  6. T. Rother, K. Schmidt, “The discretized Mie-formalism—a novel algorithm to treat scattering on axisymmetric particles,” J. Electromagn. Waves Appl. 10, 273–297 (1996). [CrossRef]
  7. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991). [CrossRef]
  8. C. Zuffada, D. Crisp, “Particle scattering in the resonance regime: full-wave solution for axisymmetric particles with large aspect ratios,” J. Opt. Soc. Am. A 14, 459–474 (1997). [CrossRef]
  9. D. J. Wielaard, M. I. Mishchenko, A. Macke, B. E. Carlson, “Improved T-matrix computations for large, nonabsorbing and weakly absorbing nonspherical particles and comparison with geometrical-optics approximation,” Appl. Opt. 36, 4305–4313 (1997). [CrossRef] [PubMed]
  10. H. Jacobowitz, “A method for computing the transfer of solar radiation through clouds of hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 11, 691–695 (1971). [CrossRef]
  11. P. Wendling, R. Wendling, H. K. Weickmann, “Scattering of solar radiation by hexagonal ice crystals,” Appl. Opt. 18, 2663–2671 (1979). [CrossRef] [PubMed]
  12. K.-D. Rockwitz, “Scattering properties of horizontally oriented ice crystal columns in cirrus clouds. Part 1,” Appl. Opt. 28, 4103–4110 (1989). [CrossRef] [PubMed]
  13. U. Wandinger, “Theoretische und experimentelle Studien zur Messung stratosphärischen Aerosols sowie zum Einfluss der Mehrfachstreuung auf Wolkenmessungen mit einem Polarisations-Raman-Lidar,” Ph.D. dissertation, rep. GKSS 94/E/9, 1994 (Universität Hamburg, Hamburg, Germany, 1994).
  14. U. Wandinger, “Multiple-scattering influence on extinction- and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998). [CrossRef]
  15. J. Reichardt, “Optische Fernmessung von Ozon in Zirruswolken,” Ph.D. dissertation, rep. GKSS 98/E/11, 1998 (Universität Hamburg, Hamburg, Germany, 1997).
  16. J. Reichardt, C. Weitkamp, “Raman–DIAL measurements in the upper troposphere and stratosphere: the effect of high-altitude ice clouds on ozone,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 208–211.
  17. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989). [CrossRef]
  18. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part II: Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46, 20–36 (1989). [CrossRef]
  19. Y. Takano, K. N. Liou, “Radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals,” J. Atmos. Sci. 52, 818–837 (1995). [CrossRef]
  20. M. I. Mishchenko, A. Macke, “Incorporation of physical optics effects and computation of the Legendre expansion for ray-tracing phase functions involving δ-function transmission,” J. Geophys. Res. 103, 1799–1805 (1998). [CrossRef]
  21. M. Hess, R. B. A. Koelemeijer, P. Stammes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301–308 (1998). [CrossRef]
  22. A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993). [CrossRef] [PubMed]
  23. M. Hess, M. Wiegner, “COP: a data library of optical properties of hexagonal ice crystals,” Appl. Opt. 33, 7740–7746 (1994). [CrossRef] [PubMed]
  24. P. Yang, K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmospheres,” Contrib. Atmos. Phys. 71, 223–248 (1998).
  25. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992). [CrossRef] [PubMed]
  26. K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976). [CrossRef]
  27. S. R. Pal, A. I. Carswell, “Multiple scattering in atmospheric clouds: lidar observations,” Appl. Opt. 15, 1990–1995 (1976). [CrossRef] [PubMed]
  28. E. W. Eloranta, “Calculation of doubly scattered lidar returns,” Ph.D. dissertation (University of Wisconsin, Madison, Wisc., 1972).
  29. S. T. Shipley, “The measurement of rainfall by lidar,” Ph.D. dissertation (University of Wisconsin, Madison, Wisc., 1978).
  30. M. I. Mishchenko, A. Macke, “How big should hexagonal ice crystals be to produce halos?” Appl. Opt. 38, 1626–1629 (1999). [CrossRef]
  31. P. Yang, K. N. Liou, “Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models,” J. Opt. Soc. Am. A 12, 162–176 (1995). [CrossRef]
  32. B. T. Draine, “The discrete dipole approximation for light scattering by irregular targets,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds. (Academic, San Diego, Calif., 1999), pp. 131–145.
  33. M. I. Mishchenko, D. J. Wielaard, B. E. Carlson, “T-matrix computations of zenith-enhanced lidar backscatter from horizontally oriented ice plates,” Geophys. Res. Lett. 24, 771–774 (1997). [CrossRef]
  34. A. Macke, M. I. Mishchenko, K. Muinonen, B. E. Carlson, “Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method,” Opt. Lett. 20, 1934–1936 (1995). [CrossRef] [PubMed]
  35. A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984). [CrossRef]
  36. M. Hess, “Modellierung und Messung optischer Eigenschaften von Cirren,” Ph.D. dissertation, Meteorologisches Institut, Wissenschaftliche Mitteilung Nr. 72, 1996 (Universität München, Munich, Germany, 1996).
  37. A. H. Auer, D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27, 919–926 (1970). [CrossRef]
  38. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984). [CrossRef] [PubMed]
  39. A. Macke, “Modellierung der optischen Eigenschaften von Cirruswolken,” Ph.D. dissertation, rep. GKSS 94/E/64, 1994 (Universität Hamburg, Hamburg, Germany, 1994).
  40. A. Macke, J. Mueller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996). [CrossRef]
  41. A. J. Heymsfield, “Precipitation development in stratiform ice clouds: a microphysical and dynamical study,” J. Atmos. Sci. 35, 284–295 (1978).
  42. W. A. Bentley, W. J. Humphreys, Snow Crystals (Dover, New York, 1962).
  43. J. D. Cross, “Study of the surface of ice with a scanning electron microscope,” in Physics of Ice (Plenum, New York, 1968), pp. 81–94.
  44. P. V. Hobbs, Ice Physics (Oxford U. Press, Bristol, UK, 1974).
  45. J. Hallett, “Faceted snow crystals,” J. Opt. Soc. Am. A 4, 581–588 (1987). [CrossRef]
  46. K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995). [CrossRef]
  47. B. J. Mason, “Snow crystals, natural and man made,” Contemp. Phys. 33, 227–243 (1992). [CrossRef]
  48. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  49. J. A. Weinman, “Effects of multiple scattering on light pulses reflected by turbid atmospheres,” J. Atmos. Sci. 33, 1763–1771 (1976). [CrossRef]
  50. J. Reichardt, S. Krumbholz, C. Weitkamp, “Rotational vibrational-rotational (RVR) Raman DIAL: a novel lidar technique for atmospheric ozone measurements,” in Thirteenth ESA Symposium on European Rocket and Balloon Programmes and Related Research: Proceedings, SP-397 (European Space Research and Technology Centre, Noordwijk, The Netherlands, 1997), pp. 237–241.
  51. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in Pascal (Cambridge U. Press, Cambridge, 1989).
  52. C. M. R. Platt, A. C. Dilley, “Remote sounding of high clouds. IV. Observed temperature variations in cirrus optical properties,” J. Atmos. Sci. 38, 1069–1082 (1981). [CrossRef]
  53. J. Reichardt, “Optical and geometrical properties of northern midlatitude cirrus clouds observed with a UV Raman lidar,” Phys. Chem. Earth 24, 255–260 (1999).
  54. C. M. R. Platt, “Remote sounding of high clouds. I. Calculation of visible and infrared optical properties from lidar and radiometer measurements,” J. Appl. Meteorol. 18, 1130–1143 (1979). [CrossRef]
  55. C. M. R. Platt, “Remote sounding of high clouds. III. Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981). [CrossRef]
  56. S. Kinne, K. N. Liou, “The effect of the nonsphericity and size distribution of ice crystals on the radiative properties of cirrus clouds,” Atmos. Res. 24, 273–284 (1989). [CrossRef]
  57. J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, W. Michaelis, “Unexpectedly low ozone concentration in midlatitude tropospheric ice clouds: a case study,” Geophys. Res. Lett. 23, 1929–1932 (1996). [CrossRef]
  58. C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11,151–11,164 (1989). [CrossRef]
  59. A. J. Heymsfield, “Ice particles in a cirriform cloud at -83 °C and implications for polar stratospheric clouds,” J. Atmos. Sci. 43, 851–855 (1986). [CrossRef]
  60. J. Ström, B. Strauss, T. Anderson, F. Schröder, J. Heintzenberg, P. Wendling, “In situ observations of the microphysical properties of young cirrus clouds,” J. Atmos. Sci. 54, 2542–2553 (1997). [CrossRef]
  61. W. P. Arnott, Y. Y. Dong, J. Hallett, M. R. Poelott, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991,” J. Geophys. Res. 99, 1371–1381 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited